In the area of modern algebra known as group theory, a Tarski monster group, named for Alfred Tarski, is an infinite group G, such that every proper subgroup H of G, other than the identity subgroup, is a cyclic group of order a fixed prime number p. A Tarski monster group is necessarily simple. It was shown by Alexander Yu. Olshanskii in 1979 that Tarski groups exist, and that there is a Tarski p-group for every prime p > 1075. They are a source of counterexamples to conjectures in group theory, most importantly to Burnside's problem and the von Neumann conjecture.
Let be a fixed prime number. An infinite group is called a Tarski monster group for if every nontrivial subgroup (i.e. every subgroup other than 1 and G itself) has elements.
is necessarily finitely generated. In fact it is generated by every two non-commuting elements.
is simple. If and is any subgroup distinct from the subgroup would have elements.
The construction of Olshanskii shows in fact that there are continuum-many non-isomorphic Tarski Monster groups for each prime .
Tarski monster groups are an example of non-amenable groups not containing a free subgroup.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The monstrous moonshine is an unexpected connection between the Monster group and modular functions. In the course we will explain the statement of the conjecture and study the main ideas and concepts
In mathematics, a matrix group is a group G consisting of invertible matrices over a specified field K, with the operation of matrix multiplication. A linear group is a group that is isomorphic to a matrix group (that is, admitting a faithful, finite-dimensional representation over K). Any finite group is linear, because it can be realized by permutation matrices using Cayley's theorem. Among infinite groups, linear groups form an interesting and tractable class.
In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right.
The Tarski number of a nonamenable group is the smallest number of pieces needed for a paradoxical decomposition of the group. Nonamenable groups of piecewise projective homeomorphisms were introduced in [N. Monod, Groups of piecewise projective homeomorph ...
The objective of this series is to study metric geometric properties of disjoint unions of Cayley graphs of amenable groups by group properties of the Cayley accumulation points in the space of marked groups. In this Part II, we prove that a disjoint union ...
We investigate how probability tools can be useful to study representations of non-amenable groups. A suitable notion of "probabilistic subgroup" is proposed for locally compact groups, and is valuable to induction of representations. Nonamenable groups ad ...