Concept

Greedy algorithm for Egyptian fractions

In mathematics, the greedy algorithm for Egyptian fractions is a greedy algorithm, first described by Fibonacci, for transforming rational numbers into Egyptian fractions. An Egyptian fraction is a representation of an irreducible fraction as a sum of distinct unit fractions, such as 5/6 = 1/2 + 1/3. As the name indicates, these representations have been used as long ago as ancient Egypt, but the first published systematic method for constructing such expansions was described in 1202 in the Liber Abaci of Leonardo of Pisa (Fibonacci). It is called a greedy algorithm because at each step the algorithm chooses greedily the largest possible unit fraction that can be used in any representation of the remaining fraction. Fibonacci actually lists several different methods for constructing Egyptian fraction representations. He includes the greedy method as a last resort for situations when several simpler methods fail; see Egyptian fraction for a more detailed listing of these methods. As Salzer (1948) details, the greedy method, and extensions of it for the approximation of irrational numbers, have been rediscovered several times by modern mathematicians, earliest and most notably by A closely related expansion method that produces closer approximations at each step by allowing some unit fractions in the sum to be negative dates back to . The expansion produced by this method for a number is called the greedy Egyptian expansion, Sylvester expansion, or Fibonacci–Sylvester expansion of . However, the term Fibonacci expansion usually refers, not to this method, but to representation of integers as sums of Fibonacci numbers. Fibonacci's algorithm expands the fraction to be represented, by repeatedly performing the replacement (simplifying the second term in this replacement as necessary). For instance: in this expansion, the denominator 3 of the first unit fraction is the result of rounding 15/7 up to the next larger integer, and the remaining fraction 2/15 is the result of simplifying −15 mod 7/15 × 3 = 6/45.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.