An Egyptian fraction is a finite sum of distinct unit fractions, such as That is, each fraction in the expression has a numerator equal to 1 and a denominator that is a positive integer, and all the denominators differ from each other. The value of an expression of this type is a positive rational number ; for instance the Egyptian fraction above sums to . Every positive rational number can be represented by an Egyptian fraction. Sums of this type, and similar sums also including and as summands, were used as a serious notation for rational numbers by the ancient Egyptians, and continued to be used by other civilizations into medieval times. In modern mathematical notation, Egyptian fractions have been superseded by vulgar fractions and decimal notation. However, Egyptian fractions continue to be an object of study in modern number theory and recreational mathematics, as well as in modern historical studies of ancient mathematics. Beyond their historical use, Egyptian fractions have some practical advantages over other representations of fractional numbers. For instance, Egyptian fractions can help in dividing food or other objects into equal shares. For example, if one wants to divide 5 pizzas equally among 8 diners, the Egyptian fraction means that each diner gets half a pizza plus another eighth of a pizza, for example by splitting 4 pizzas into 8 halves, and the remaining pizza into 8 eighths. Exercises in performing this sort of fair division of food are a standard classroom example in teaching students to work with unit fractions. Egyptian fractions can provide a solution to rope-burning puzzles, in which a given duration is to be measured by igniting non-uniform ropes which burn out after a unit time. Any rational fraction of a unit of time can be measured by expanding the fraction into a sum of unit fractions and then, for each unit fraction , burning a rope so that it always has simultaneously lit points where it is burning. For this application, it is not necessary for the unit fractions to be distinct from each other.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (28)
ChE-403: Heterogeneous reaction engineering
The theoretical background and practical aspects of heterogeneous reactions including the basic knowledge of heterogeneous catalysis are introduced. The fundamentals are given to allow the design of m
PHYS-101(f): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
COM-404: Information theory and coding
The mathematical principles of communication that govern the compression and transmission of data and the design of efficient methods of doing so.
Show more
Related concepts (14)
Sylvester's sequence
In number theory, Sylvester's sequence is an integer sequence in which each term is the product of the previous terms, plus one. The first few terms of the sequence are 2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443 . Sylvester's sequence is named after James Joseph Sylvester, who first investigated it in 1880. Its values grow doubly exponentially, and the sum of its reciprocals forms a series of unit fractions that converges to 1 more rapidly than any other series of unit fractions.
Fraction
A fraction (from fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, three-quarters. A common, vulgar, or simple fraction (examples: and ) consists of an integer numerator, displayed above a line (or before a slash like ), and a non-zero integer denominator, displayed below (or after) that line.
Rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction \tfrac p q of two integers, a numerator p and a non-zero denominator q. For example, \tfrac{-3}{7} is a rational number, as is every integer (e.g., 5 = 5/1). The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface Q, or blackboard bold \Q. A rational number is a real number.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.