Summary
In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function. Cauchy's formula shows that, in complex analysis, "differentiation is equivalent to integration": complex differentiation, like integration, behaves well under uniform limits – a result that does not hold in real analysis. Let U be an open subset of the complex plane C, and suppose the closed disk D defined as is completely contained in U. Let f : U → C be a holomorphic function, and let γ be the circle, oriented counterclockwise, forming the boundary of D. Then for every a in the interior of D, The proof of this statement uses the Cauchy integral theorem and like that theorem, it only requires f to be complex differentiable. Since can be expanded as a power series in the variable it follows that holomorphic functions are analytic, i.e. they can be expanded as convergent power series. In particular f is actually infinitely differentiable, with This formula is sometimes referred to as Cauchy's differentiation formula. The theorem stated above can be generalized. The circle γ can be replaced by any closed rectifiable curve in U which has winding number one about a. Moreover, as for the Cauchy integral theorem, it is sufficient to require that f be holomorphic in the open region enclosed by the path and continuous on its closure. Note that not every continuous function on the boundary can be used to produce a function inside the boundary that fits the given boundary function. For instance, if we put the function f(z) = 1/z, defined for = 1, into the Cauchy integral formula, we get zero for all points inside the circle. In fact, giving just the real part on the boundary of a holomorphic function is enough to determine the function up to an imaginary constant — there is only one imaginary part on the boundary that corresponds to the given real part, up to addition of a constant.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood