An electromagnetic four-potential is a relativistic vector function from which the electromagnetic field can be derived. It combines both an electric scalar potential and a magnetic vector potential into a single four-vector.
As measured in a given frame of reference, and for a given gauge, the first component of the electromagnetic four-potential is conventionally taken to be the electric scalar potential, and the other three components make up the magnetic vector potential. While both the scalar and vector potential depend upon the frame, the electromagnetic four-potential is Lorentz covariant.
Like other potentials, many different electromagnetic four-potentials correspond to the same electromagnetic field, depending upon the choice of gauge.
This article uses tensor index notation and the Minkowski metric sign convention (+ − − −). See also covariance and contravariance of vectors and raising and lowering indices for more details on notation. Formulae are given in SI units and Gaussian-cgs units.
The electromagnetic four-potential can be defined as:
{| class="wikitable"
|-
! SI units
! Gaussian units
|-
| ||
|}
in which φ is the electric potential, and A is the magnetic potential (a vector potential). The units of Aα are V·s·m−1 in SI, and Mx·cm−1 in Gaussian-cgs.
The electric and magnetic fields associated with these four-potentials are:
{| class="wikitable"
|-
! SI units
! Gaussian units
|-
| ||
|-
| ||
|}
In special relativity, the electric and magnetic fields transform under Lorentz transformations. This can be written in the form of a tensor - the electromagnetic tensor. This is written in terms of the electromagnetic four-potential and the four-gradient as:
assuming that the signature of the Minkowski metric is (+ − − −). If the said signature is instead (− + + +) then:
This essentially defines the four-potential in terms of physically observable quantities, as well as reducing to the above definition.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores radiation fields for a time-dependent source and their mathematical expressions.
Covers the principles of aperture antennas and the EPFL principle of duality.
Explores Lorentz invariance, tensors in vector spaces, and electromagnetic potentials.
In classical electromagnetism, magnetic vector potential (often called A) is the vector quantity defined so that its curl is equal to the magnetic field: . Together with the electric potential φ, the magnetic vector potential can be used to specify the electric field E as well. Therefore, many equations of electromagnetism can be written either in terms of the fields E and B, or equivalently in terms of the potentials φ and A. In more advanced theories such as quantum mechanics, most equations use potentials rather than fields.
In special relativity, electromagnetism and wave theory, the d'Alembert operator (denoted by a box: ), also called the d'Alembertian, wave operator, box operator or sometimes quabla operator (cf. nabla symbol) is the Laplace operator of Minkowski space. The operator is named after French mathematician and physicist Jean le Rond d'Alembert. In Minkowski space, in standard coordinates (t, x, y, z), it has the form Here is the 3-dimensional Laplacian and ημν is the inverse Minkowski metric with , for .
In physics, a sign convention is a choice of the physical significance of signs (plus or minus) for a set of quantities, in a case where the choice of sign is arbitrary. "Arbitrary" here means that the same physical system can be correctly described using different choices for the signs, as long as one set of definitions is used consistently. The choices made may differ between authors. Disagreement about sign conventions is a frequent source of confusion, frustration, misunderstandings, and even outright errors in scientific work.
Ce cours traite de l'électromagnétisme dans le vide et dans les milieux continus. A partir des principes fondamentaux de l'électromagnétisme, on établit les méthodes de résolution des équations de Max
We introduce and derive the Fourier -enhanced 3D electrostatic field solver of the gyrokinetic full -f PIC code PICLS. The solver makes use of a Fourier representation in one periodic direction of the domain to make the solving of the system easily paralle ...
In the present paper, we show, by means of numerical simulations, that electromagnetic field data obtained from the radiation of a return-stroke lightning discharge and measured over a short-duration time-window can be exploited to reconstruct the attenuat ...
2023
In a recent paper, a procedure to reconstruct the attenuation function of a return-stroke current from the simultaneous measurements of the channel-base current and the radiated electromagnetic fields was presented. One of the assumptions of the whole fram ...