**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Numerical linear algebra

Summary

Numerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of. Numerical linear algebra uses properties of vectors and matrices to develop computer algorithms that minimize the error introduced by the computer, and is also concerned with ensuring that the algorithm is as efficient as possible.
Numerical linear algebra aims to solve problems of continuous mathematics using finite precision computers, so its applications to the natural and social sciences are as vast as the applications of continuous mathematics. It is often a fundamental part of engineering and computational science problems, such as and signal processing, telecommunication, computational finance, materials science simulations, structural biology, data mining, bioinformatics, and fluid dynamics. Matrix methods are particularly used in finite difference methods, finite element methods, and the modeling of differential equations. Noting the broad applications of numerical linear algebra, Lloyd N. Trefethen and David Bau, III argue that it is "as fundamental to the mathematical sciences as calculus and differential equations", even though it is a comparatively small field. Because many properties of matrices and vectors also apply to functions and operators, numerical linear algebra can also be viewed as a type of functional analysis which has a particular emphasis on practical algorithms.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (50)

Related people (78)

Related units (7)

Related concepts (22)

Related MOOCs (9)

Ontological neighbourhood

Related publications (705)

Related lectures (358)

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

MATH-500: Error control in scientific modelling

Errors are ubiquitous in computational science as neither models nor numerical techniques are perfect. With respect to eigenvalue problems motivated from materials science (transfer problems, atomisti

CS-457: Geometric computing

This course will cover mathematical concepts and efficient numerical methods for geometric computing. We will explore the beauty of geometry and develop algorithms to simulate and optimize 2D and 3D g

MATH-453: Computational linear algebra

This course provides an overview of advanced techniques for solving large-scale linear algebra problems, as they typically arise in applications. A central goal of this course is to give the ability t

LAPACK

LAPACK ("Linear Algebra Package") is a standard software library for numerical linear algebra. It provides routines for solving systems of linear equations and linear least squares, eigenvalue problems, and singular value decomposition. It also includes routines to implement the associated matrix factorizations such as LU, QR, Cholesky and Schur decomposition. LAPACK was originally written in FORTRAN 77, but moved to Fortran 90 in version 3.2 (2008). The routines handle both real and complex matrices in both single and double precision.

Basic Linear Algebra Subprograms

Basic Linear Algebra Subprograms (BLAS) is a specification that prescribes a set of low-level routines for performing common linear algebra operations such as vector addition, scalar multiplication, dot products, linear combinations, and matrix multiplication. They are the de facto standard low-level routines for linear algebra libraries; the routines have bindings for both C ("CBLAS interface") and Fortran ("BLAS interface").

Matrix (mathematics)

In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.

Collisionless Systems Equilibrium

Explores collisionless systems equilibrium, anisotropic distribution functions, Jeans Equations, and models with finite potential.

Elasto-gravitary Bending: Mechanics of Slender Structure

Explores large deformations of inextensible sheets bent under self-weight and their equilibrium shapes under gravity.

Numerical Analysis: Linear Systems

Covers the formulation of linear systems and iterative methods like Richardson, Jacobi, and Gauss-Seidel.

Mario Paolone, André Hodder, Lucien André Félicien Pierrejean, Simone Rametti

Literature on linear induction motors (LIMs) has proposed several approaches to model the behavior of such devices for different applications. In terms of accuracy and fidelity, field analysis-based models are the most relevant. Closed-form or numerical so ...

2024In this thesis we will present and analyze randomized algorithms for numerical linear algebra problems. An important theme in this thesis is randomized low-rank approximation. In particular, we will study randomized low-rank approximation of matrix functio ...

Marcos Rubinstein, Farhad Rachidi-Haeri, Elias Per Joachim Le Boudec, Chaouki Kasmi, Nicolas Mora Parra, Emanuela Radici

Time-domain solutions of Maxwell’s equations in homogeneous and isotropic media are paramount to studying transient or broadband phenomena. However, analytical solutions are generally unavailable for practical applications, while numerical solutions are co ...

2024