Concept

Otto E. Neugebauer

Otto Eduard Neugebauer (May 26, 1899 – February 19, 1990) was an Austrian-American mathematician and historian of science who became known for his research on the history of astronomy and the other exact sciences as they were practiced in antiquity and the Middle Ages. By studying clay tablets, he discovered that the ancient Babylonians knew much more about mathematics and astronomy than had been previously realized. The National Academy of Sciences has called Neugebauer "the most original and productive scholar of the history of the exact sciences, perhaps of the history of science, of our age." Neugebauer was born in Innsbruck, Austria. His father Rudolph Neugebauer was a railroad construction engineer and a collector and scholar of Oriental carpets. His parents died when he was quite young. During World War I, Neugebauer enlisted in the Austrian Army and served as an artillery lieutenant on the Italian front and then in an Italian prisoner-of-war camp alongside fellow countryman Ludwig Wittgenstein. In 1919, he entered the University of Graz in electrical engineering and physics and in 1921 he transferred to the University of Munich. From 1922 to 1924, he studied mathematics at the University of Göttingen under Richard Courant, Edmund Landau, and Emmy Noether. During 1924–1925, he was at the University of Copenhagen, where his interests changed to the history of Egyptian mathematics. He returned to Göttingen and remained there until 1933. His thesis Die Grundlagen der ägyptischen Bruchrechnung ("The Fundamentals of Egyptian Calculation with Fractions") (Springer, 1926) was a mathematical analysis of the table in the Rhind Papyrus. In 1927, he received his venia legendi for the history of mathematics and served as Privatdozent. In 1927, his first paper on Babylonian mathematics was an account of the origin of the sexagesimal system. In 1929, Neugebauer founded Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik (QS), a Springer series devoted to the history of the mathematical sciences, in which he published extended papers on Egyptian computational techniques in arithmetic and geometry, including the Moscow Papyrus, the most important text for geometry.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.