Concept

Shock mount

Summary
A shock mount or isolation mount is a mechanical fastener that connects two parts elastically. They are used for shock and vibration isolation. Isolation mounts allow a piece of equipment to be securely mounted to a foundation and/or frame and, at the same time, allow it to float independently from the substrate. Shock mounts can be found in a wide variety of applications. Shock mounts can be used to isolate the foundation or substrate from the dynamics of the mounted equipment. This is vital on submarines where silence is critical to mission success. Yachts also use shock mounts to dampen the noise (mainly the one transmitted throughout the structure) and increase the comfort. This is usually done through elastic supports and transmission couplings. Another common example of this are the motor and transmission mounts that are used in virtually every automobile manufactured today. Without isolation mounts, the interior noise and comfort level in today's vehicles would be significantly different than what we have grown accustomed to. In this case, shock and vibration isolation mounts are often chosen by the nature of the dynamics produced by the equipment and the weight of the equipment. Shock mounts can be used to isolate sensitive equipment from undesirable dynamics of the foundation or substrate. Sensitive laboratory equipment needs to be isolated from handling shocks and ambient vibration. Military equipment and ships need to be able to withstand nearby explosions. Shock mounts are found in some disc drives and compact disc players, in which soft bushings are all that mechanically hold the disk and reading assembly, thereby isolating it from outside vibrations and from other outside loads such as torsion. In this case, isolation mounts are often chosen by the sensitivity of the equipment to shock (fragility) and vibration (natural frequency) and the weight of the equipment. This and nature of the input shock and vibration must be matched.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.