Power analysis is a form of side channel attack in which the attacker studies the power consumption of a cryptographic hardware device. These attacks rely on basic physical properties of the device: semiconductor devices are governed by the laws of physics, which dictate that changes in voltages within the device require very small movements of electric charges (currents). By measuring those currents, it is possible to learn a small amount of information about the data being manipulated.
Simple power analysis (SPA) involves visually interpreting power traces, or graphs of electrical activity over time. Differential power analysis (DPA) is a more advanced form of power analysis, which can allow an attacker to compute the intermediate values within cryptographic computations through statistical analysis of data collected from multiple cryptographic operations. SPA and DPA were introduced to the open cryptography community in 1998 by Paul Kocher, Joshua Jaffe and Benjamin Jun.
In cryptography, a side channel attack is used to extract secret data from some secure device (such as a smart card, tamper-resistant "black box", or integrated circuit). Side-channel analysis is typically trying to non-invasively extract cryptographic keys and other secret information from the device. A simple example of this is the German tank problem: the serial numbers of tanks provide details of the production data for tanks. In physical security, a non-invasive attack would be similar to lock-picking, where a successful attack leaves no trace of the attacker being present.
Simple power analysis (SPA) is a side-channel attack which involves visual examination of graphs of the current used by a device over time. Variations in power consumption occur as the device performs different operations. For example, different instructions performed by a microprocessor will have differing power consumption profiles.
Codeflow that depends on a secret value will thus leak the code-flow via the power consumption monitoring (and thus also leak the secret value).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Cryptography, or cryptology (from κρυπτός "hidden, secret"; and γράφειν graphein, "to write", or -λογία -logia, "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others.
Current cryptographic solutions will become obsolete with the arrival of large-scale universal quantum computers. As a result, the National Institute of Standards and Technology supervises a post-quantum standardization process which involves evaluating ca ...
Post-quantum cryptography is a branch of cryptography which deals with cryptographic algorithms whose hardness assumptions are not based on problems known to be solvable by a quantum computer, such as the RSA problem, factoring or discrete logarithms.This ...
Side-channel attacks exploit a physical observable originating from a cryptographic device in order to extract its secrets. Many practically relevant advances in the field of side-channel analysis relate to security evaluations of cryptographic functions a ...