**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Consistency

Summary

In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if it has a model, i.e., there exists an interpretation under which all formulas in the theory are true. This is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead. The syntactic definition states a theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences of T. Let A be a set of closed sentences (informally "axioms") and \langle A\rangle the set of closed sentences provable from A under some (specified, possibly implicitly) formal deductive system. The set of axioms A

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related courses (26)

Related people (17)

CS-322: Introduction to database systems

This course provides a deep understanding of the concepts behind data management systems. It covers fundamental data management topics such as system architecture, data models, query processing and optimization, database design, storage organization, and transaction management.

PHYS-206: Physics IV

Wave physics, Introduction to quantum mechanics.

MATH-111(en): Linear algebra (english)

The purpose of the course is to introduce the basic notions of linear algebra and its applications.

Related publications (100)

Loading

Loading

Loading

Related concepts (44)

Mathematical logic

Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research i

Logic

Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follo

First-order logic

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer

Related units (7)

The present report addresses the rigorous study of convergence of a stabilized finite volume element method applied to stationary and time dependent Stokes problems. Some preliminary results about the existence and uniqueness of solution at continuous and discrete level are provided for stabilized finite element and finite volume element formulations when using two different stabilization techniques, and then we prove consistency of the methods for the time-independent and time-dependent problems, and derive optimal convergence rates.

2009In this work, we first revise some extensions of the standard Hopfield model in the low storage limit, namely the correlated attractor case and the multitasking case recently introduced by the authors. The former case is based on a modification of the Hebbian prescription, which induces a coupling between consecutive patterns and this effect is tuned by a parameter a. In the latter case, dilution is introduced in pattern entries, in such a way that a fraction d of them is blank. Then, we merge these two extensions to obtain a system able to retrieve several patterns in parallel and the quality of retrieval, encoded by the set of Mattis magnetizations {m(mu)}, is reminiscent of the correlation among patterns. By tuning the parameters d and a, qualitatively different outputs emerge, ranging from highly hierarchical to symmetric. The investigations are accomplished by means of both numerical simulations and statistical mechanics analysis, properly adapting a novel technique originally developed for spin glasses, i.e. the Hamilton-Jacobi interpolation, with excellent agreement. Finally, we show the thermodynamical equivalence of this associative network with a (restricted) Boltzmann machine and study its stochastic dynamics to obtain even a dynamical picture, perfectly consistent with the static scenario earlier discussed. (c) 2012 Elsevier Ltd. All rights reserved.

Constraint Satisfaction Problems (CSPs) are ubiquitous in computer science. Many problems, ranging from resource allocation and scheduling to fault diagnosis and design, involve constraint satisfaction as an essential component. A CSP is given by a set of variables and constraints on small subsets of these variables. It is solved by finding assignments of values to the variables such that all constraints are satisfied. In its most general form, a CSP is combinatorial and complex. In this thesis, we consider constraint satisfaction problems with variables in continuous, numerical domains. Contrary to most existing techniques, which focus on computing a single optimal solution, we address the problem of computing a compact representation of the space of all solutions that satisfy the constraints. This has the advantage that no optimization criterion has to be formulated beforehand, and that the space of possibilities can be explored systematically. In certain applications, such as diagnosis and design, these advantages are crucial. In consistency techniques, the solution space is represented by labels assigned to individual variables or combinations of variables. When the labeling is globally consistent, each label contains only those values or combinations of values which appear in at least one solution. This kind of labeling is a compact, sound and complete representation of the solution space, and can be combined with other reasoning methods. In practice, computing a globally consistent labeling is too complex. This is usually tackled in two ways. One way is to enforce consistencies locally, using propagation algorithms. This prunes the search space and hence reduces the subsequent search effort. The other way is to identify simplifying properties which guarantee that global consistency can be enforced tractably using local propagation algorithms. When constraints are represented by mathematical expressions, implementing local consistency algorithms is difficult because it requires tools for solving arbitrary systems of equations. In this thesis, we propose to approximate feasible solution regions by 2k-trees, thus providing a means of combining constraints logically rather than numerically. This representation, commonly used in computer vision and image processing, avoids using complex mathematical tools. We propose simple and stable algorithms for computing labels of arbitrary degrees of consistency using this representation. For binary constraints, it is known that simplifying convexity properties reduces the complexity of solving a CSP. These properties guarantee that local degrees of consistency are sufficient to ensure global consistency. We show how, in continuous domains, these results can be generalized to ternary and in fact arbitrary n-ary constraints. This leads to polynomial-time algorithms for computing globally consistent labels for a large class of constraint satisfaction problems with continuous variables. We describe and justify our representation of constraints and our consistency algorithms. We also give a complete analysis of the theoretical results we present. Finally, the developed techniques are illustrated using practical examples.

Related lectures (43)