In the field of complex analysis in mathematics, the Cauchy–Riemann equations, named after Augustin Cauchy and Bernhard Riemann, consist of a system of two partial differential equations which form a necessary and sufficient condition for a complex function of a complex variable to be complex differentiable. These equations are and where u(x, y) and v(x, y) are real differentiable bivariate functions. Typically, u and v are respectively the real and imaginary parts of a complex-valued function f(x + iy) = f(x, y) = u(x, y) + iv(x, y) of a single complex variable z = x + iy where x and y are real variables; u and v are real differentiable functions of the real variables. Then f is complex differentiable at a complex point if and only if the partial derivatives of u and v satisfy the Cauchy–Riemann equations at that point. A holomorphic function is a complex function that is differentiable at every point of some open subset of the complex plane C. It has been proved that holomorphic functions are analytic and analytic complex functions are complex-differentiable. In particular, holomorphic functions are infinitely complex-differentiable. This equivalence between differentiability and analyticity is the starting point of all complex analysis. The Cauchy–Riemann equations first appeared in the work of Jean le Rond d'Alembert. Later, Leonhard Euler connected this system to the analytic functions. Cauchy then used these equations to construct his theory of functions. Riemann's dissertation on the theory of functions appeared in 1851. Suppose that . The complex-valued function is differentiable at any point z in the complex plane. The real part and the imaginary part are and their partial derivatives are We see that indeed the Cauchy–Riemann equations are satisfied, and . The Cauchy-Riemann equations are one way of looking at the condition for a function to be differentiable in the sense of complex analysis: in other words, they encapsulate the notion of function of a complex variable by means of conventional differential calculus.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MATH-207(d): Analysis IV
The course studies the fundamental concepts of complex analysis and Laplace analysis with a view to their use to solve multidisciplinary scientific engineering problems.
Related lectures (1)
Advanced Analysis II: Maximum Solutions
Explores maximum solutions and their applications in modeling population growth, economic scenarios, and climate, with a focus on exponential growth interpretation and tropical days prediction.
Related publications (1)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.