In geometry, a barycentric coordinate system is a coordinate system in which the location of a point is specified by reference to a simplex (a triangle for points in a plane, a tetrahedron for points in three-dimensional space, etc.). The barycentric coordinates of a point can be interpreted as masses placed at the vertices of the simplex, such that the point is the center of mass (or barycenter) of these masses. These masses can be zero or negative; they are all positive if and only if the point is inside the simplex.
Every point has barycentric coordinates, and their sum is not zero. Two tuples of barycentric coordinates specify the same point if and only if they are proportional; that is to say, if one tuple can be obtained by multiplying the elements of the other tuple by the same non-zero number. Therefore, barycentric coordinates are either considered to be defined up to multiplication by a nonzero constant, or normalized for summing to unity.
Barycentric coordinates were introduced by August Möbius in 1827. They are special homogenous coordinates. Barycentric coordinates are strongly related with Cartesian coordinates and, more generally, to affine coordinates (see ).
Barycentric coordinates are particularly useful in triangle geometry for studying properties that do not depend on the angles of the triangle, such as Ceva's theorem, Routh's theorem, and Menelaus's theorem. In computer-aided design, they are useful for defining some kinds of Bézier surfaces.
Let be n + 1 points in a Euclidean space, a flat or an affine space of dimension n that are affinely independent; this means that there is no affine subspace of dimension n - 1 that contains all the points, or, equivalently that the points define a simplex. Given any point there are scalars that are not all zero, such that
for any point O. (As usual, the notation represents the translation vector or free vector that maps the point A to the point B.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory
and discusses major
In geometry, the Lemoine point, Grebe point or symmedian point is the intersection of the three symmedians (medians reflected at the associated angle bisectors) of a triangle. Ross Honsberger called its existence "one of the crown jewels of modern geometry". In the Encyclopedia of Triangle Centers the symmedian point appears as the sixth point, X(6). For a non-equilateral triangle, it lies in the open orthocentroidal disk punctured at its own center, and could be any point therein.
In geometry, the trilinear coordinates x : y : z of a point relative to a given triangle describe the relative directed distances from the three sidelines of the triangle. Trilinear coordinates are an example of homogeneous coordinates. The ratio x : y is the ratio of the perpendicular distances from the point to the sides (extended if necessary) opposite vertices A and B respectively; the ratio y : z is the ratio of the perpendicular distances from the point to the sidelines opposite vertices B and C respectively; and likewise for z : x and vertices C and A.
In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center. More generally, an n-sided polygon with all its vertices on the same circle, also called the circumscribed circle, is called a cyclic polygon, or in the special case n = 4, a cyclic quadrilateral.
Cavitation is a topic that has long been of interest due to the large and growing range of applications associated with it. This is mainly because the collapse of cavitation bubbles releases a considerable amount of energy into the surrounding environment. ...
EPFL2023
, ,
Digital brain atlases define a hierarchy of brain regions and their locations in three-dimensional space. They provide a standard coordinate system in which diverse datasets can be integrated for visualization and analysis. They also enable building of dat ...
2023
,
With the current trend of increasing complexity of industrial systems, the construction and monitoring of health indicators becomes even more challenging. Given that health indicators are commonly employed to predict the end of life, a crucial criterion fo ...