CobordismIn mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary (French bord, giving cobordism) of a manifold. Two manifolds of the same dimension are cobordant if their disjoint union is the boundary of a compact manifold one dimension higher. The boundary of an (n + 1)-dimensional manifold W is an n-dimensional manifold ∂W that is closed, i.e., with empty boundary.
Complex manifoldIn differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in , such that the transition maps are holomorphic. The term complex manifold is variously used to mean a complex manifold in the sense above (which can be specified as an integrable complex manifold), and an almost complex manifold. Since holomorphic functions are much more rigid than smooth functions, the theories of smooth and complex manifolds have very different flavors: compact complex manifolds are much closer to algebraic varieties than to differentiable manifolds.
Complex torusIn mathematics, a complex torus is a particular kind of complex manifold M whose underlying smooth manifold is a torus in the usual sense (i.e. the cartesian product of some number N circles). Here N must be the even number 2n, where n is the complex dimension of M. All such complex structures can be obtained as follows: take a lattice Λ in a vector space V isomorphic to Cn considered as real vector space; then the quotient group is a compact complex manifold. All complex tori, up to isomorphism, are obtained in this way.
Euler sequenceIn mathematics, the Euler sequence is a particular exact sequence of sheaves on n-dimensional projective space over a ring. It shows that the sheaf of relative differentials is stably isomorphic to an -fold sum of the dual of the Serre twisting sheaf. The Euler sequence generalizes to that of a projective bundle as well as a Grassmann bundle (see the latter article for this generalization.) Let be the n-dimensional projective space over a commutative ring A. Let be the sheaf of 1-differentials on this space, and so on.
Proj constructionIn algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory. In this article, all rings will be assumed to be commutative and with identity. Let be a graded ring, whereis the direct sum decomposition associated with the gradation.
Chern classIn mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, Gromov-Witten invariants. Chern classes were introduced by . Chern classes are characteristic classes. They are topological invariants associated with vector bundles on a smooth manifold.
Kodaira embedding theoremIn mathematics, the Kodaira embedding theorem characterises non-singular projective varieties, over the complex numbers, amongst compact Kähler manifolds. In effect it says precisely which complex manifolds are defined by homogeneous polynomials. Kunihiko Kodaira's result is that for a compact Kähler manifold M, with a Hodge metric, meaning that the cohomology class in degree 2 defined by the Kähler form ω is an integral cohomology class, there is a complex-analytic embedding of M into complex projective space of some high enough dimension N.
Rational homotopy theoryIn mathematics and specifically in topology, rational homotopy theory is a simplified version of homotopy theory for topological spaces, in which all torsion in the homotopy groups is ignored. It was founded by and . This simplification of homotopy theory makes certain calculations much easier. Rational homotopy types of simply connected spaces can be identified with (isomorphism classes of) certain algebraic objects called Sullivan minimal models, which are commutative differential graded algebras over the rational numbers satisfying certain conditions.
Serre spectral sequenceIn mathematics, the Serre spectral sequence (sometimes Leray–Serre spectral sequence to acknowledge earlier work of Jean Leray in the Leray spectral sequence) is an important tool in algebraic topology. It expresses, in the language of homological algebra, the singular (co)homology of the total space X of a (Serre) fibration in terms of the (co)homology of the base space B and the fiber F. The result is due to Jean-Pierre Serre in his doctoral dissertation. Let be a Serre fibration of topological spaces, and let F be the (path-connected) fiber.
Homogeneous functionIn mathematics, a homogeneous function is a function of several variables such that, if all its arguments are multiplied by a scalar, then its value is multiplied by some power of this scalar, called the degree of homogeneity, or simply the degree; that is, if k is an integer, a function f of n variables is homogeneous of degree k if for every and For example, a homogeneous polynomial of degree k defines a homogeneous function of degree k.