Summary
A workflow consists of an orchestrated and repeatable pattern of activity, enabled by the systematic organization of resources into processes that transform materials, provide services, or process information. It can be depicted as a sequence of operations, the work of a person or group, the work of an organization of staff, or one or more simple or complex mechanisms. From a more abstract or higher-level perspective, workflow may be considered a view or representation of real work. The flow being described may refer to a document, service, or product that is being transferred from one step to another. Workflows may be viewed as one fundamental building block to be combined with other parts of an organization's structure such as information technology, teams, projects and hierarchies. The development of the concept of a workflow occurred above a series of loosely defined, overlapping eras. The modern history of workflows can be traced to Frederick Taylor and Henry Gantt, although the term "workflow" was not in use as such during their lifetimes. One of the earliest instances of the term "work flow" was in a railway engineering journal from 1921. Taylor and Gantt launched the study of the deliberate, rational organization of work, primarily in the context of manufacturing. This gave rise to time and motion studies. Related concepts include job shops and queuing systems (Markov chains). The 1948 book Cheaper by the Dozen introduced the emerging concepts to the context of family life. The invention of the typewriter and the copier helped spread the study of the rational organization of labor from the manufacturing shop floor to the office. Filing systems and other sophisticated systems for managing physical information flows evolved. Several events likely contributed to the development of formalized information workflows. First, the field of optimization theory matured and developed mathematical optimization techniques.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
CH-419: Protein mass spectrometry and proteomics
In systems biology, proteomics represents an essential pillar. The understanding of protein function and regulation provides key information to decipher the complexity of living systems. Proteomic tec
CS-489: Experience design
As we move towards a design economy, the success of new products, systems and services depend increasingly on the excellence of personal experience. This course introduces students to the notion and p
BIO-643: Integrative structural biology for Life sciences
Hands-on course in Biomolecular Integrative Structural Biology by SV experts in the field of X-ray crystallography, cryo-Electron Microscopy, Bio-NMR and protein modeling tools. No previous knowledge
Show more