In elementary geometry, two geometric objects are perpendicular if their intersection forms right angles (angles that are 90 degrees or π/2 radians wide) at the point of intersection called a foot. The condition of perpendicularity may be represented graphically using the perpendicular symbol, ⟂. Perpendicular intersections can happen between two lines (or two line segments), between a line and a plane, and between two planes.
Perpendicularity is one particular instance of the more general mathematical concept of orthogonality; perpendicularity is the orthogonality of classical geometric objects. Thus, in advanced mathematics, the word "perpendicular" is sometimes used to describe much more complicated geometric orthogonality conditions, such as that between a surface and its normal vector.
A line is said to be perpendicular to another line if the two lines intersect at a right angle. Explicitly, a first line is perpendicular to a second line if (1) the two lines meet; and (2) at the point of intersection the straight angle on one side of the first line is cut by the second line into two congruent angles. Perpendicularity can be shown to be symmetric, meaning if a first line is perpendicular to a second line, then the second line is also perpendicular to the first. For this reason, we may speak of two lines as being perpendicular (to each other) without specifying an order. A great example of perpendicularity can be seen in any compass, note the cardinal points; North, East, South, West (NESW)
The line N-S is perpendicular to the line W-E and the angles N-E, E-S, S-W and W-N are all 90° to one another.
Perpendicularity easily extends to segments and rays. For example, a line segment is perpendicular to a line segment if, when each is extended in both directions to form an infinite line, these two resulting lines are perpendicular in the sense above. In symbols, means line segment AB is perpendicular to line segment CD.
A line is said to be perpendicular to a plane if it is perpendicular to every line in the plane that it intersects.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist embedded in two, three, or higher dimensional spaces. The word line may also refer to a line segment in everyday life that has two points to denote its ends (endpoints). A line can be referred to by two points that lie on it (e.g. ) or by a single letter (e.g. ).
In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center. More generally, an n-sided polygon with all its vertices on the same circle, also called the circumscribed circle, is called a cyclic polygon, or in the special case n = 4, a cyclic quadrilateral.
In geometry, bisection is the division of something into two equal or congruent parts (having the same shape and size). Usually it involves a bisecting line, also called a 'bisector'. The most often considered types of bisectors are the 'segment bisector' (a line that passes through the midpoint of a given segment) and the 'angle bisector' (a line that passes through the apex of an angle, that divides it into two equal angles). In three-dimensional space, bisection is usually done by a bisecting plane, also called the 'bisector'.
Background: Static posterior subluxation of the humeral head (SPSH) results in glenohumeral osteoarthritis. Treatment strategies for SPSH with or without resulting osteoarthritis remain challenging. There is growing interest in evaluating the rotator cuff ...
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
The removal of electrons located in the core shells of molecules creates transient states that live between a few femtoseconds to attoseconds. Owing to these short lifetimes, time-resolved studies of these states are challenging and complex molecular dynam ...
Magnetic nanorods driven by rotating fields in water can be rapidly steered along any direction while generating strong and localized hydrodynamic flow fields. Here we show that, when raising the frequency of the rotating field, these nanopropellers underg ...