Ruffini's ruleIn mathematics, Ruffini's rule is a method for computation of the Euclidean division of a polynomial by a binomial of the form x – r. It was described by Paolo Ruffini in 1804. The rule is a special case of synthetic division in which the divisor is a linear factor. The rule establishes a method for dividing the polynomial: by the binomial: to obtain the quotient polynomial: The algorithm is in fact the long division of P(x) by Q(x). To divide P(x) by Q(x): Take the coefficients of P(x) and write them down in order.
Polynomial greatest common divisorIn algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate polynomials over a field the polynomial GCD may be computed, like for the integer GCD, by the Euclidean algorithm using long division. The polynomial GCD is defined only up to the multiplication by an invertible constant.
Synthetic divisionIn algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division. It is mostly taught for division by linear monic polynomials (known as Ruffini's rule), but the method can be generalized to division by any polynomial. The advantages of synthetic division are that it allows one to calculate without writing variables, it uses few calculations, and it takes significantly less space on paper than long division.
Polynomial long divisionIn algebra, polynomial long division is an algorithm for dividing a polynomial by another polynomial of the same or lower degree, a generalized version of the familiar arithmetic technique called long division. It can be done easily by hand, because it separates an otherwise complex division problem into smaller ones. Sometimes using a shorthand version called synthetic division is faster, with less writing and fewer calculations. Another abbreviated method is polynomial short division (Blomqvist's method).
PolynomialIn mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2 − yz + 1. Polynomials appear in many areas of mathematics and science.