In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2 − yz + 1.
Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry.
The word polynomial joins two diverse roots: the Greek poly, meaning "many", and the Latin nomen, or "name". It was derived from the term binomial by replacing the Latin root bi- with the Greek poly-. That is, it means a sum of many terms (many monomials). The word polynomial was first used in the 17th century.
The x occurring in a polynomial is commonly called a variable or an indeterminate. When the polynomial is considered as an expression, x is a fixed symbol which does not have any value (its value is "indeterminate"). However, when one considers the function defined by the polynomial, then x represents the argument of the function, and is therefore called a "variable". Many authors use these two words interchangeably.
A polynomial P in the indeterminate x is commonly denoted either as P or as P(x). Formally, the name of the polynomial is P, not P(x), but the use of the functional notation P(x) dates from a time when the distinction between a polynomial and the associated function was unclear.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation. Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. After the introduction of computers, this algorithm became fundamental for computing efficiently with polynomials.
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
In the mathematical subfield of numerical analysis, a B-spline or basis spline is a spline function that has minimal support with respect to a given degree, smoothness, and domain partition. Any spline function of given degree can be expressed as a linear combination of B-splines of that degree. Cardinal B-splines have knots that are equidistant from each other. B-splines can be used for curve-fitting and numerical differentiation of experimental data.
Covers the normalization process of plane algebraic curves, focusing on irreducible polynomials and affine curves.
Explores advanced integration techniques such as change of variable and integration by parts to simplify complex integrals and solve challenging integration problems.
Explores the method of undetermined coefficients for solving non-homogeneous linear differential equations with constant coefficients.
We introduce robust principal component analysis from a data matrix in which the entries of its columns have been corrupted by permutations, termed Unlabeled Principal Component Analysis (UPCA). Using algebraic geometry, we establish that UPCA is a well-de ...
Microtome Publ2024
, , , ,
Energy-dispersive X-ray spectroscopy (EDXS) mapping with a scanning transmission electron microscope (STEM) is commonly used for chemical characterization of materials. However, STEM-EDXS quantification becomes challenging when the phases constituting the ...
Deep heteroscedastic regression involves jointly optimizing the mean and covariance of the predicted distribution using the negative log-likelihood. However, recent works show that this may result in sub-optimal convergence due to the challenges associated ...