A seismic source is a device that generates controlled seismic energy used to perform both reflection and refraction seismic surveys. A seismic source can be simple, such as dynamite, or it can use more sophisticated technology, such as a specialized air gun. Seismic sources can provide single pulses or continuous sweeps of energy, generating seismic waves, which travel through a medium such as water or layers of rocks. Some of the waves then reflect and refract and are recorded by receivers, such as geophones or hydrophones.
Seismic sources may be used to investigate shallow subsoil structure, for engineering site characterization, or to study deeper structures, either in the search for petroleum and mineral deposits, or to map subsurface faults or for other scientific investigations. The returning signals from the sources are detected by seismic sensors (geophones or hydrophones) in known locations relative to the position of the source. The recorded signals are then subjected to specialist processing and interpretation to yield comprehensible information about the subsurface.
A seismic source signal has the following characteristics:
Generates an impulse signal
Band-limited
The generated waves are time-varying
The generalized equation that shows all above properties is:
where is the maximum frequency component of the generated waveform.
The most basic seismic source is a sledgehammer. A seismic energy is generated either by striking the ground directly, or more commonly striking a metal or polyethylene plate on the ground. Typically applied for near-surface seismic refraction surveys. Impact of sledgehammer contact with the surface can provide sufficient seismic energy for interface depths up to 30 m or more, depending on geological conditions and physical properties.
Explosives most widely used as seismic sources are known as gelatin dynamites.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Reflection seismology (or seismic reflection) is a method of exploration geophysics that uses the principles of seismology to estimate the properties of the Earth's subsurface from reflected seismic waves. The method requires a controlled seismic source of energy, such as dynamite or Tovex blast, a specialized air gun or a seismic vibrator. Reflection seismology is similar to sonar and echolocation. Reflections and refractions of seismic waves at geologic interfaces within the Earth were first observed on recordings of earthquake-generated seismic waves.
This course deals with the main aspects of seismic design and assessment of buildings including conceptual design. It covers different structural design and evaluation philosophies for new and existin
This course presents the classical and new approaches required to study the source mechanisms of earthquakes, combining theory and observations in a unified methodology, with a key focus on the mechan
Quantitative decision making based on life-cycle considerations that incorporate direct losses, seismic risk assessment, and collapse. Seismic hazard analysis, response simulation, damage and loss est
Explores the seismic behavior and classification of unreinforced masonry buildings in Switzerland, covering various construction types, failure modes, and retrofit solutions.
Fibre-reinforced polymers (FRP) strengthening can be applied to decrease the seismic vulnerability of existing masonry buildings, both with regard to in-plane and out-of-plane failure mechanisms. Experimentally, the impact of strengthening solutions has be ...
Proceedings of the 2nd Croatian Conference on Earthquake Eng2023
The seismic activity rate is one of the most significant factors in seismic hazard modeling. Although it is usually estimated from observed seismicity, a complete picture of the possible earthquakes is not always available since catalogs of the observed ea ...
Surface roughness ubiquitously prevails in natural faults across various length scales. Despite extensive studies highlighting the important role of fault geometry in the dynamics of tectonic earthquakes, whether and how fault roughness affects fluid-induc ...