In mathematics, Goldie's theorem is a basic structural result in ring theory, proved by Alfred Goldie during the 1950s. What is now termed a right Goldie ring is a ring R that has finite uniform dimension (="finite rank") as a right module over itself, and satisfies the ascending chain condition on right annihilators of subsets of R.
Goldie's theorem states that the semiprime right Goldie rings are precisely those that have a semisimple Artinian right classical ring of quotients. The structure of this ring of quotients is then completely determined by the Artin–Wedderburn theorem.
In particular, Goldie's theorem applies to semiprime right Noetherian rings, since by definition right Noetherian rings have the ascending chain condition on all right ideals. This is sufficient to guarantee that a right-Noetherian ring is right Goldie. The converse does not hold: every right Ore domain is a right Goldie domain, and hence so is every commutative integral domain.
A consequence of Goldie's theorem, again due to Goldie, is that every semiprime principal right ideal ring is isomorphic to a finite direct sum of prime principal right ideal rings. Every prime principal right ideal ring is isomorphic to a matrix ring over a right Ore domain.
This is a sketch of the characterization mentioned in the introduction. It may be found in .
If R be a semiprime right Goldie ring, then it is a right order in a semisimple ring:
Essential right ideals of R are exactly those containing a regular element.
There are no non-zero nil ideals in R.
R is a right nonsingular ring.
From the previous observations, R is a right Ore ring, and so its right classical ring of quotients Qr exists. Also from the previous observations, Qr is a semisimple ring. Thus R is a right order in Qr.
If R is a right order in a semisimple ring Q, then it is semiprime right Goldie:
Any right order in a Noetherian ring (such as Q) is right Goldie.
Any right order in a Noetherian semiprime ring (such as Q) is itself semiprime.
Thus, R is semiprime right Goldie.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, especially in the area of algebra known as ring theory, the Ore condition is a condition introduced by Øystein Ore, in connection with the question of extending beyond commutative rings the construction of a field of fractions, or more generally localization of a ring. The right Ore condition for a multiplicative subset S of a ring R is that for a ∈ R and s ∈ S, the intersection aS ∩ sR ≠ ∅. A (non-commutative) domain for which the set of non-zero elements satisfies the right Ore condition is called a right Ore domain.
In abstract algebra, Morita equivalence is a relationship defined between rings that preserves many ring-theoretic properties. More precisely two rings like R, S are Morita equivalent (denoted by ) if their are equivalent (denoted by ). It is named after Japanese mathematician Kiiti Morita who defined equivalence and a similar notion of duality in 1958. Rings are commonly studied in terms of their modules, as modules can be viewed as representations of rings.
In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings (group rings, division rings, universal enveloping algebras), as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.