In the mathematical field of graph theory, a distance-regular graph is a regular graph such that for any two vertices v and w, the number of vertices at distance j from v and at distance k from w depends only upon j, k, and the distance between v and w. Some authors exclude the complete graphs and disconnected graphs from this definition. Every distance-transitive graph is distance-regular. Indeed, distance-regular graphs were introduced as a combinatorial generalization of distance-transitive graphs, having the numerical regularity properties of the latter without necessarily having a large automorphism group. It turns out that a graph of diameter is distance-regular if and only if there is an array of integers such that for all , gives the number of neighbours of at distance from and gives the number of neighbours of at distance from for any pair of vertices and at distance on . The array of integers characterizing a distance-regular graph is known as its intersection array. A pair of connected distance-regular graphs are cospectral if and only if they have the same intersection array. A distance-regular graph is disconnected if and only if it is a disjoint union of cospectral distance-regular graphs. Suppose is a connected distance-regular graph of valency with intersection array . For all : let denote the -regular graph with adjacency matrix formed by relating pairs of vertices on at distance , and let denote the number of neighbours of at distance from for any pair of vertices and at distance on . for all . and . for any eigenvalue multiplicity of , unless is a complete multipartite graph. for any eigenvalue multiplicity of , unless is a cycle graph or a complete multipartite graph. if is a simple eigenvalue of . has distinct eigenvalues. If is strongly regular, then and . Some first examples of distance-regular graphs include: The complete graphs. The cycles graphs. The odd graphs. The Moore graphs. The collinearity graph of a regular near polygon. The Wells graph and the Sylvester graph.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.