Concept

# Shear matrix

Summary
In mathematics (particularly linear algebra), a shear matrix or transvection is an elementary matrix that represents the addition of a multiple of one row or column to another. Such a matrix may be derived by taking the identity matrix and replacing one of the zero elements with a non-zero value. The name shear reflects the fact that the matrix represents a shear transformation. Geometrically, such a transformation takes pairs of points in a vector space that are purely axially separated along the axis whose row in the matrix contains the shear element, and effectively replaces those pairs by pairs whose separation is no longer purely axial but has two vector components. Thus, the shear axis is always an eigenvector of S. Definition A typical shear matrix is of the form S = \begin{pmatrix} 1 & 0 & 0 & \lambda & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \end{pmatrix}. This matrix shears p
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Related people

Related units