In finance, arbitrage pricing theory (APT) is a multi-factor model for asset pricing which relates various macro-economic (systematic) risk variables to the pricing of financial assets. Proposed by economist Stephen Ross in 1976, it is widely believed to be an improved alternative to its predecessor, the Capital Asset Pricing Model (CAPM). APT is founded upon the law of one price, which suggests that within an equilibrium market, rational investors will implement arbitrage such that the equilibrium price is eventually realised. As such, APT argues that when opportunities for arbitrage are exhausted in a given period, then the expected return of an asset is a linear function of various factors or theoretical market indices, where sensitivities of each factor is represented by a factor-specific beta coefficient or factor loading. Consequently, it provides traders with an indication of ‘true’ asset value and enables exploitation of market discrepancies via arbitrage. The linear factor model structure of the APT is used as the basis for evaluating asset allocation, the performance of managed funds as well as the calculation of cost of capital. Furthermore, the newer APT model is more dynamic being utilised in more theoretical application than the preceding CAPM model. A 1986 article written by Gregory Connor and Robert Korajczyk, utilised the APT framework and applied it to portfolio performance measurement suggesting that the Jensen coefficient is an acceptable measurement of portfolio performance.
APT is a single-period static model, which helps investors understand the trade-off between risk and return. The average investor aims to optimise the returns for any given level or risk and as such, expects a positive return for bearing greater risk. As per the APT model, risky asset returns are said to follow a factor intensity structure if they can be expressed as:
where
is a constant for asset
is a systematic factor
is the sensitivity of the th asset to factor , also called factor loading,
and is the risky asset's idiosyncratic random shock with mean zero.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This class is designed to give you an understanding of the basics of empirical asset pricing. This means that we will learn how to test asset pricing models and apply them mostly to stock markets. We
This course provides an overview of the theory of asset pricing and portfolio choice theory following historical developments in the field and putting
emphasis on theoretical models that help our unde
In financial economics, asset pricing refers to a formal treatment and development of two main pricing principles, outlined below, together with the resultant models. There have been many models developed for different situations, but correspondingly, these stem from either general equilibrium asset pricing or rational asset pricing, the latter corresponding to risk neutral pricing.
In finance, the beta (β or market beta or beta coefficient) is a statistic that measures the expected increase or decrease of an individual stock price in proportion to movements of the Stock market as a whole. Beta can be used to indicate the contribution of an individual asset to the market risk of a portfolio when it is added in small quantity. It is referred to as an asset's non-diversifiable risk, systematic risk, or market risk. Beta is not a measure of idiosyncratic risk.
The efficient-market hypothesis (EMH) is a hypothesis in financial economics that states that asset prices reflect all available information. A direct implication is that it is impossible to "beat the market" consistently on a risk-adjusted basis since market prices should only react to new information. Because the EMH is formulated in terms of risk adjustment, it only makes testable predictions when coupled with a particular model of risk.
This course gives you an easy introduction to interest rates and related contracts. These include the LIBOR, bonds, forward rate agreements, swaps, interest rate futures, caps, floors, and swaptions.
Discount is the difference between the face value of a bond and its present value. We propose an arbitrage-free dynamic framework for discount models, which provides an alternative to the Heath-Jarrow-Morton framework for forward rates. We derive general c ...
This paper reviews the mortgage-backed securities (MBS) market, with a particular emphasis on agency residential MBS in the United States. We discuss the institutional environment, security design, MBS risks and asset pricing, and the economic effects of m ...
Edward Elgar2023
This thesis investigates the relationship between investors' demand shocks and asset pricesthrough the use of data on portfolio holdings. In three chapters, I study the theory, estimation,and application of demand-based asset pricing models, which incorpor ...