Summary
In quantum mechanics, the consistent histories (also referred to as decoherent histories) approach is intended to give a modern interpretation of quantum mechanics, generalising the conventional Copenhagen interpretation and providing a natural interpretation of quantum cosmology. This interpretation of quantum mechanics is based on a consistency criterion that then allows probabilities to be assigned to various alternative histories of a system such that the probabilities for each history obey the rules of classical probability while being consistent with the Schrödinger equation. In contrast to some interpretations of quantum mechanics, particularly the Copenhagen interpretation, the framework does not include "wavefunction collapse" as a relevant description of any physical process, and emphasizes that measurement theory is not a fundamental ingredient of quantum mechanics. A homogeneous history (here labels different histories) is a sequence of Propositions specified at different moments of time (here labels the times). We write this as: and read it as "the proposition is true at time and then the proposition is true at time and then ". The times are strictly ordered and called the temporal support of the history. Inhomogeneous histories are multiple-time propositions which cannot be represented by a homogeneous history. An example is the logical OR of two homogeneous histories: . These propositions can correspond to any set of questions that include all possibilities. Examples might be the three propositions meaning "the electron went through the left slit", "the electron went through the right slit" and "the electron didn't go through either slit". One of the aims of the approach is to show that classical questions such as, "where are my keys?" are consistent. In this case one might use a large number of propositions each one specifying the location of the keys in some small region of space. Each single-time proposition can be represented by a projection operator acting on the system's Hilbert space (we use "hats" to denote operators).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.