Concept

Anfinsen's dogma

Summary
Anfinsen's dogma, also known as the thermodynamic hypothesis, is a postulate in molecular biology. It states that, at least for a small globular protein in its standard physiological environment, the native structure is determined only by the protein's amino acid sequence. The dogma was championed by the Nobel Prize Laureate Christian B. Anfinsen from his research on the folding of ribonuclease A. The postulate amounts to saying that, at the environmental conditions (temperature, solvent concentration and composition, etc.) at which folding occurs, the native structure is a unique, stable and kinetically accessible minimum of the free energy. In other words, there are three conditions for formation of a unique protein structure: Uniqueness – Requires that the sequence does not have any other configuration with a comparable free energy. Hence the free energy minimum must be unchallenged. Stability – Small changes in the surrounding environment cannot give rise to changes in the minimum configuration. This can be pictured as a free energy surface that looks more like a funnel (with the native state in the bottom of it) rather than like a soup plate (with several closely related low-energy states); the free energy surface around the native state must be rather steep and high, in order to provide stability. Kinetical accessibility – Means that the path in the free energy surface from the unfolded to the folded state must be reasonably smooth or, in other words, that the folding of the chain must not involve highly complex changes in the shape (like knots or other high order conformations). Protein folding in a cell is a highly complex process that involves transport of the newly synthesized proteins to appropriate cellular compartments through targeting, permanent misfolding, temporarily unfolded states, post-translational modifications, quality control, and formation of protein complexes facilitated by chaperones. Some proteins need the assistance of chaperone proteins to fold properly.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.