Concept

Inversion transformation

Summary
In mathematical physics, inversion transformations are a natural extension of Poincaré transformations to include all conformal, one-to-one transformations on coordinate space-time. They are less studied in physics because, unlike the rotations and translations of Poincaré symmetry, an object cannot be physically transformed by the inversion symmetry. Some physical theories are invariant under this symmetry, in these cases it is what is known as a 'hidden symmetry'. Other hidden symmetries of physics include gauge symmetry and general covariance. In 1831 the mathematician Ludwig Immanuel Magnus began to publish on transformations of the plane generated by inversion in a circle of radius R. His work initiated a large body of publications, now called inversive geometry. The most prominently named mathematician became August Ferdinand Möbius once he reduced the planar transformations to complex number arithmetic. In the company of physicists employing the inversion transformation early on was Lord Kelvin, and the association with him leads it to be called the Kelvin transform. In the following we shall use imaginary time () so that space-time is Euclidean and the equations are simpler. The Poincaré transformations are given by the coordinate transformation on space-time parametrized by the 4-vectors V where is an orthogonal matrix and is a 4-vector. Applying this transformation twice on a 4-vector gives a third transformation of the same form. The basic invariant under this transformation is the space-time length given by the distance between two space-time points given by 4-vectors x and y: These transformations are subgroups of general 1-1 conformal transformations on space-time. It is possible to extend these transformations to include all 1-1 conformal transformations on space-time We must also have an equivalent condition to the orthogonality condition of the Poincaré transformations: Because one can divide the top and bottom of the transformation by we lose no generality by setting to the unit matrix.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.