**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Completely metrizable space

Summary

In mathematics, a completely metrizable space (metrically topologically complete space) is a topological space (X, T) for which there exists at least one metric d on X such that (X, d) is a complete metric space and d induces the topology T. The term topologically complete space is employed by some authors as a synonym for completely metrizable space, but sometimes also used for other classes of topological spaces, like completely uniformizable spaces or Čech-complete spaces.
Difference between complete metric space and completely metrizable space
The difference between completely metrizable space and complete metric space is in the words there exists at least one metric in the definition of completely metrizable space, which is not the same as there is given a metric (the latter would yield the definition of complete metric space). Once we make the choice of the metric on a completely metrizable space (out of all the complete metrics compatible with the topology), we get a

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related publications

Related people

No results

No results

Related units

No results

Related concepts

No results

Related courses

Related lectures

No results

No results