In statistics, the multivariate t-distribution (or multivariate Student distribution) is a multivariate probability distribution. It is a generalization to random vectors of the Student's t-distribution, which is a distribution applicable to univariate random variables. While the case of a random matrix could be treated within this structure, the matrix t-distribution is distinct and makes particular use of the matrix structure. One common method of construction of a multivariate t-distribution, for the case of dimensions, is based on the observation that if and are independent and distributed as and (i.e. multivariate normal and chi-squared distributions) respectively, the matrix is a p × p matrix, and is a constant vector then the random variable has the density and is said to be distributed as a multivariate t-distribution with parameters . Note that is not the covariance matrix since the covariance is given by (for ). The constructive definition of a multivariate t-distribution simultaneously serves as a sampling algorithm: Generate and , independently. Compute . This formulation gives rise to the hierarchical representation of a multivariate t-distribution as a scale-mixture of normals: where indicates a gamma distribution with density proportional to , and conditionally follows . In the special case , the distribution is a multivariate Cauchy distribution. There are in fact many candidates for the multivariate generalization of Student's t-distribution. An extensive survey of the field has been given by Kotz and Nadarajah (2004). The essential issue is to define a probability density function of several variables that is the appropriate generalization of the formula for the univariate case. In one dimension (), with and , we have the probability density function and one approach is to write down a corresponding function of several variables. This is the basic idea of elliptical distribution theory, where one writes down a corresponding function of variables that replaces by a quadratic function of all the .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.