**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Distance measure

Summary

Distance measures are used in physical cosmology to give a natural notion of the distance between two objects or events in the universe. They are often used to tie some observable quantity (such as the luminosity of a distant quasar, the redshift of a distant galaxy, or the angular size of the acoustic peaks in the cosmic microwave background (CMB) power spectrum) to another quantity that is not directly observable, but is more convenient for calculations (such as the comoving coordinates of the quasar, galaxy, etc.). The distance measures discussed here all reduce to the common notion of Euclidean distance at low redshift.
In accord with our present understanding of cosmology, these measures are calculated within the context of general relativity, where the Friedmann–Lemaître–Robertson–Walker solution is used to describe the universe.
Overview
There are a few different definitions of "distance" in cosmology which are all asymptotic one to another for small redshifts. The

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (1)

Related publications (8)

Loading

Loading

Loading

Related units (1)

Related concepts (27)

Redshift

In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decreas

Galaxy

A galaxy is a system of stars, stellar remnants, interstellar gas, dust, and dark matter bound together by gravity. The word is derived from

Expansion of the universe

The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion; the universe does not expand "into"

Related courses (1)

Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen
from the point of view of observations.

Standard analysis pipelines for measurements of Baryon Acoustic Oscillations (BAO) in galaxy surveys make use of a fiducial cosmological model to guide the data compression required to transform from observed redshifts and angles to the measured angular and radial BAO peak positions. In order to remove any dependence on the fiducial cosmology from the results, all models compared to the data should mimic the compression and its dependence on the fiducial model. In practice, approximations are made when testing models: (1) There is assumed to be no residual dependence on the fiducial cosmology after reconstruction, (2) differences in the distance-redshift relationship are assumed to match a linear scaling, and (3) differences in clustering between true and fiducial models are assumed to be removed by the free parameters used to null the non-BAO signal. We test these approximations using the current standard measurement procedure with a set of halo catalogues from the AEMULUS suite of N-body simulations, which span a range of omega CDM cosmological models. We focus on reconstruction of the primordial BAO and locating the BAO. For the range of omega CDM cosmologies covered by the AEMULUS suite, we find no evidence for systematic errors in the measured BAO shift parameters alpha(parallel to) and alpha(perpendicular to) to < 0.1%. However, the measured errors sigma(alpha parallel to) and sigma(alpha perpendicular to) show a notable absolute increase by up to +0.001 and +0.002, respectively, in the case that the fiducial cosmology does not match the truth. These effects on the inferred BAO scale will be important, given the precision of measurements expected from future surveys including DESI, Euclid, and WFIRST.

Related lectures (11)

Anand Stéphane Raichoor, Cheng Zhao

We search for the baryon acoustic oscillations in the projected cross-correlation function binned into transverse comoving radius between the SDSS-IV DR16 eBOSS quasars and a dense photometric sample of galaxies selected from the DESI Legacy Imaging Surveys. We estimate the density of the photometric sample of galaxies in this redshift range to be about 2900 deg(-2), which is deeper than the official DESI emission line galaxy selection, and the density of the spectroscopic sample is about 20 deg(-2). In order to mitigate the systematics related to the use of different imaging surveys close to the detection limit, we use a neural network approach that accounts for complex dependences between the imaging attributes and the observed galaxy density. We find that we are limited by the depth of the imaging surveys that affects the density and purity of the photometric sample and its overlap in redshift with the quasar sample, which thus affects the performance of the method. When cross-correlating the photometric galaxies with quasars in the range 0.6

Frédéric Courbin, Marc Gentile, Georges Meylan, Guldariya Nurbaeva

Weak gravitational lensing is a very sensitive way of measuring cosmological parameters, including dark energy, and of testing current theories of gravitation. In practice, this requires exquisite measurement of the shapes of billions of galaxies over large areas of the sky, as may be obtained with the EUCLID and WFIRST satellites. For a given survey depth, applying image denoising to the data both improves the accuracy of the shape measurements and increases the number density of galaxies with a measurable shape. We perform simple tests of three different denoising techniques, using synthetic data. We propose a new and simple denoising method, based on wavelet decomposition of the data and a Wiener filtering of the resulting wavelet coefficients. When applied to the GREAT08 challenge dataset, this technique allows us to improve the quality factor of the measurement (Q; GREAT08 definition), by up to a factor of two. We demonstrate that the typical pixel size of the EUCLID optical channel will allow us to use image denoising.

2011