Concept

Kasner metric

Summary
The Kasner metric (developed by and named for the American mathematician Edward Kasner in 1921) is an exact solution to Albert Einstein's theory of general relativity. It describes an anisotropic universe without matter (i.e., it is a vacuum solution). It can be written in any spacetime dimension D>3 and has strong connections with the study of gravitational chaos. Metric and conditions The metric in D>3 spacetime dimensions is :\text{d}s^2 = -\text{d}t^2 + \sum_{j=1}^{D-1} t^{2p_j} [\text{d}x^j]^2, and contains D-1 constants p_j, called the Kasner exponents. The metric describes a spacetime whose equal-time slices are spatially flat, however space is expanding or contracting at different rates in different directions, depending on the values of the p_j. Test particles in this metric whose comoving coordinate differs by \Delta x^j are separated by a physical distance t^
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading