Summary
Thixotropy is a time-dependent shear thinning property. Certain gels or fluids that are thick or viscous under static conditions will flow (become thinner, less viscous) over time when shaken, agitated, shear-stressed, or otherwise stressed (time-dependent viscosity). They then take a fixed time to return to a more viscous state. Some non-Newtonian pseudoplastic fluids show a time-dependent change in viscosity; the longer the fluid undergoes shear stress, the lower its viscosity. A thixotropic fluid is a fluid which takes a finite time to attain equilibrium viscosity when introduced to a steep change in shear rate. Some thixotropic fluids return to a gel state almost instantly, such as ketchup, and are called pseudoplastic fluids. Others such as yogurt take much longer and can become nearly solid. Many gels and colloids are thixotropic materials, exhibiting a stable form at rest but becoming fluid when agitated. Thixotropy arises because particles or structured solutes require time to organize. An overview of thixotropy has been provided by Mewis and Wagner. Some fluids are anti-thixotropic: constant shear stress for a time causes an increase in viscosity or even solidification. Fluids which exhibit this property are sometimes called rheopectic. Anti-thixotropic fluids are less well documented than thixotropic fluids. Some clays are thixotropic, with their behavior of great importance in structural and geotechnical engineering. Landslides, such as those common in the cliffs around Lyme Regis, Dorset and in the Aberfan spoil tip disaster in Wales are evidence of this phenomenon. Similarly, a lahar is a mass of earth liquefied by a volcanic event, which rapidly solidifies once coming to rest. Drilling muds used in geotechnical applications can be thixotropic. Honey from honey bees may also exhibit this property under certain conditions (such as heather honey or manuka honey). Both cytoplasm and the ground substance in the human body are thixotropic, as is semen.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related people (1)