**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Robust optimization

Summary

Robust optimization is a field of mathematical optimization theory that deals with optimization problems in which a certain measure of robustness is sought against uncertainty that can be represented as deterministic variability in the value of the parameters of the problem itself and/or its solution. It is related to, but often distinguished from, probabilistic optimization methods such as chance-constrained optimization.
History
The origins of robust optimization date back to the establishment of modern decision theory in the 1950s and the use of worst case analysis and Wald's maximin model as a tool for the treatment of severe uncertainty. It became a discipline of its own in the 1970s with parallel developments in several scientific and technological fields. Over the years, it has been applied in statistics, but also in operatio

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (14)

Related publications (90)

Loading

Loading

Loading

Related courses (13)

MGT-418: Convex optimization

This course introduces the theory and application of modern convex optimization from an engineering perspective.

EE-715: Optimal control

This doctoral course provides an introduction to optimal control covering fundamental theory, numerical implementation and problem formulation for applications.

MATH-329: Continuous optimization

This course introduces students to continuous, nonlinear optimization. We study the theory of optimization with continuous variables (with full proofs), and we analyze and implement important algorithms to solve constrained and unconstrained problems.

Related concepts (2)

Linear programming

Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented

Mathematical optimization

Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternative

Related units (9)

Related lectures (24)

Daniel Kuhn, Mengmeng Li, Tobias Sutter

We study a stochastic program where the probability distribution of the uncertain problem parameters is unknown and only indirectly observed via finitely many correlated samples generated by an unknown Markov chain with d states. We propose a data-driven distributionally robust optimization model to estimate the problem’s objective function and optimal solution. By leveraging results from large deviations theory, we derive statistical guarantees on the quality of these estimators. The underlying worst-case expectation problem is nonconvex and involves O(d^2) decision variables. Thus, it cannot be solved efficiently for large d. By exploiting the structure of this prob- lem, we devise a customized Frank-Wolfe algorithm with convex direction-finding subproblems of size O(d). We prove that this algorithm finds a stationary point efficiently under mild conditions. The efficiency of the method is predicated on a dimensionality reduction enabled by a dual reformulation. Numerical experiments indicate that our approach has better computational and statistical properties than the state-of-the-art methods.

2021Since the 2008 Global Financial Crisis, the financial market has become more unpredictable than ever before, and it seems set to remain so in the forseeable future. This means an investor faces unprecedented risks, hence the increasing need for robust portfolio optimization to protect them against uncertainty, which is potentially devastating if unattended yet ignored in the classical Markowitz model, whose another deficiency is the absence of higher moments in its assumption of the distribution of asset returns. We establish an equivalence between the Markowitz model and the portfolio return value-at-risk optimization problem under multivariate normality of asset returns, so that we can add these excluded features into the former implicitly by incorporating them into the latter. We also provide a probabilistic smoothing spline approximation method and a deterministic model within the location-scale framework under elliptical distribution of the asset returns to solve the robust portfolio return value-at-risk optimization problem. In particular for the deterministic model, we introduce a novel eigendecomposition uncertainty set which lives in the positive definite space for the scale matrix without compromising on the computational complexity and conservativeness of the optimization problem, invent a method to determine the size of the involved uncertainty sets, test it out on real data, and explore its diversification properties. Although the value-at-risk has been the standard risk measure adopted by the banking and insurance industry since the early nineties, it has since attracted many criticisms, in particular from McNeil et al. (2005) and the Basel Committee on Banking Supervision in 2012, also known as Basel 3.5. Basel 4 even suggests a move away from the

`what" value-at-risk to the `

what-if" conditional value-at-risk' measure. We shall see that the former may be replaced with the latter or even other risk measures in our formulations easily.Byung-Geun Choi, Napat Rujeerapaiboon

Growth-optimal portfolios are guaranteed to accumulate higher wealth than any other investment strategy in the long run. However, they tend to be risky in the short term. For serially uncorrelated markets, similar portfolios with more robust guarantees have been recently proposed. This paper extends these robust portfolios by accommodating non-zero autocorrelations that may reflect investors' beliefs about market movements. Moreover, we prove that the risk incurred by such autocorrelations can be absorbed by modifying the covariance matrix of asset returns.

2016