L'optimisation robuste est une branche de l'optimisation mathématique qui cherche à résoudre un problème d'optimisation en prenant en compte les différentes sources d'incertitude de celui-ci.
Les origines de l'optimisation robuste remontent aux débuts de la théorie de la décision moderne dans les années 1950. Des « analyses des cas les plus défavorables » ont été réalisées pour faire face aux fortes incertitudes. L'optimisation robuste devient dans les années 1970 une discipline à elle-seule avec des applications dans des domaines tels que la recherche opérationnelle, la théorie du contrôle, les statistiques, l'économie...
Considérons le problème de type optimisation linéaire suivant :
où est un sous-ensemble de .
La ligne fait de ce programme linéaire un problème d'optimisation robuste. En effet, pour qu'une solution soit réalisable, la contrainte doit être satisfaite par la pire paire , c'est-à-dire la paire qui maximise la valeur de pour la valeur donnée de .
Si l'espace de paramètre est fini (composé d'un nombre fini d'éléments), alors le problème d'optimisation robuste est lui-même un problème d'optimisation linéaire : pour chaque il existe une contrainte linéaire.
Si l'espace de paramètre n'est pas fini, alors ce problème est un problème de , c'est-à-dire un problème de programmation linéaire avec un nombre fini de variables de décision et un nombre infini de contraintes.
Il existe de nombreux critères de classification des problèmes/modèles d'optimisation robuste. En particulier, on peut faire la distinction entre les problèmes traitant de modèles robustes locaux ou globaux, et entre les modèles robustes probabilistes et non-probabilistes. L'optimisation robuste moderne traite d'abord de modèles robustes non-probabilistes qui cherchent à résoudre le pire des cas.
Il existe des cas dans lesquels la robustesse travaille sur de petites perturbations sur une valeur nominale d'un paramètre.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t