Résumé
L'optimisation robuste est une branche de l'optimisation mathématique qui cherche à résoudre un problème d'optimisation en prenant en compte les différentes sources d'incertitude de celui-ci. Les origines de l'optimisation robuste remontent aux débuts de la théorie de la décision moderne dans les années 1950. Des « analyses des cas les plus défavorables » ont été réalisées pour faire face aux fortes incertitudes. L'optimisation robuste devient dans les années 1970 une discipline à elle-seule avec des applications dans des domaines tels que la recherche opérationnelle, la théorie du contrôle, les statistiques, l'économie... Considérons le problème de type optimisation linéaire suivant : où est un sous-ensemble de . La ligne fait de ce programme linéaire un problème d'optimisation robuste. En effet, pour qu'une solution soit réalisable, la contrainte doit être satisfaite par la pire paire , c'est-à-dire la paire qui maximise la valeur de pour la valeur donnée de . Si l'espace de paramètre est fini (composé d'un nombre fini d'éléments), alors le problème d'optimisation robuste est lui-même un problème d'optimisation linéaire : pour chaque il existe une contrainte linéaire. Si l'espace de paramètre n'est pas fini, alors ce problème est un problème de , c'est-à-dire un problème de programmation linéaire avec un nombre fini de variables de décision et un nombre infini de contraintes. Il existe de nombreux critères de classification des problèmes/modèles d'optimisation robuste. En particulier, on peut faire la distinction entre les problèmes traitant de modèles robustes locaux ou globaux, et entre les modèles robustes probabilistes et non-probabilistes. L'optimisation robuste moderne traite d'abord de modèles robustes non-probabilistes qui cherchent à résoudre le pire des cas. Il existe des cas dans lesquels la robustesse travaille sur de petites perturbations sur une valeur nominale d'un paramètre.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.