Concept

Birkhoff's axioms

In 1932, G. D. Birkhoff created a set of four postulates of Euclidean geometry in the plane, sometimes referred to as Birkhoff's axioms. These postulates are all based on basic geometry that can be confirmed experimentally with a scale and protractor. Since the postulates build upon the real numbers, the approach is similar to a model-based introduction to Euclidean geometry. Birkhoff's axiom system was utilized in the secondary-school textbook by Birkhoff and Beatley. These axioms were also modified by the School Mathematics Study Group to provide a new standard for teaching high school geometry, known as SMSG axioms. A few other textbooks in the foundations of geometry use variants of Birkhoff's axioms. The distance between two points A and B is denoted by d(A, B), and the angle formed by three points A, B, C is denoted by ∠ ABC. Postulate I: Postulate of line measure. The set of points {A, B, ...} on any line can be put into a 1:1 correspondence with the real numbers {a, b, ...} so that b − a = d(A, B) for all points A and B. Postulate II: Point-line postulate. There is one and only one line l that contains any two given distinct points P and Q. Postulate III: Postulate of angle measure. The set of rays {l, m, n, ...} through any point O can be put into 1:1 correspondence with the real numbers a (mod 2π) so that if A and B are points (not equal to O) of l and m, respectively, the difference am − al (mod 2π) of the numbers associated with the lines l and m is ∠ AOB. Furthermore, if the point B on m varies continuously in a line r not containing the vertex O, the number am varies continuously also. Postulate IV: Postulate of similarity. Given two triangles ABC and A'B'C' and some constant k > 0 such that d(A', B' ) = kd(A, B), d(A', C' ) = kd(A, C) and ∠ B'A'C' = ±∠ BAC, then d(B', C' ) = kd(B, C), ∠ C'B'A' = ±∠ CBA, and ∠ A'C'B' = ±∠ ACB.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.