Nickel titanium, also known as nitinol, is a metal alloy of nickel and titanium, where the two elements are present in roughly equal atomic percentages. Different alloys are named according to the weight percentage of nickel; e.g., nitinol 55 and nitinol 60. Nitinol alloys exhibit two closely related and unique properties: the shape memory effect and superelasticity (also called pseudoelasticity). Shape memory is the ability of nitinol to undergo deformation at one temperature, stay in its deformed shape when the external force is removed, then recover its original, undeformed shape upon heating above its "transformation temperature". Superelasticity is the ability for the metal to undergo large deformations and immediately return to its undeformed shape upon removal of the external load. Nitinol can deform 10–30 times as much as ordinary metals and return to its original shape. Whether nitinol behaves with the shape memory effect or superelasticity depends on whether it is above the transformation temperature of the specific alloy. Below the transformation temperature it exhibits the shape memory effect, and above that temperature it behaves superelastically. The word "nitinol" is derived from its composition and its place of discovery: (Nickel Titanium-Naval Ordnance Laboratory). William J. Buehler along with Frederick Wang, discovered its properties during research at the Naval Ordnance Laboratory in 1959. Buehler was attempting to make a better missile nose cone, which could resist fatigue, heat and the force of impact. Having found that a 1:1 alloy of nickel and titanium could do the job, in 1961 he presented a sample at a laboratory management meeting. The sample, folded up like an accordion, was passed around and flexed by the participants. One of them applied heat from his pipe lighter to the sample and, to everyone's surprise, the accordion-shaped strip contracted and took its previous shape. While the potential applications for nitinol were realized immediately, practical efforts to commercialize the alloy did not take place until a decade later.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
ME-410: Mechanical product design and development
Study and explore design principles of the different mechatronic components and systems. We will cover in-depth especially on meso-scale actuators, sensors and body construction methods.
MSE-422: Advanced metallurgy
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
MSE-651: Crystallography of structural phase transformations
The microstructure of many alloys and ceramics are constituted of very fine intricate domains (variants) created by diffusive or displacive phase transformations. The course introduces the crystallogr
Show more
Related lectures (29)
Smart Composites: Materials and Applications
Covers the concept, types, and applications of smart composites, including self-sensing H2 storage vessels and active skis.
Multiferroics: Magnetoelastic Effect
Delves into the coupling between magnetic and elastic subsystems in multiferroics, exploring the magnetic shape memory effect and different material structures.
Plastic Deformation and Work Hardening
Explores plastic deformation, work hardening, and strategies to reduce hardening in materials.
Show more
Related publications (110)

EBSD study of variant reorientation, texture, and twin formation in a martensitic NiTi alloy deformed in compression

Roland Logé, Cyril Cayron, Mathijs Pieter van der Meer, Junfeng Xiao

Martensitic crystallography plays a vital role in the texture evolution and mechanical properties in Nickel-Titanium (NiTi) shape memory alloys when subjected to deformation. However, their microstructural changes during deformation are not well known and ...
Oxford2023

Zero Parasitic Shift Pivoting Kinematic Structures Based On Coupled N-RRR Planar Parallel Mechanims For Flexure Pivot Design

Simon Nessim Henein, Florent Cosandier, Loïc Benoît Tissot-Daguette, Etienne Frédéric Gabriel Thalmann

Flexure pivots, which are widely used for precision mechanisms, generally have the drawback of presenting parasitic shifts accompanying their rotation. The known solutions for canceling these undesirable parasitic translations usually induce a loss in radi ...
ASME2023

Fabrication and Characterization of the Kirigami-Inspired SMA-Powered Actuator

Yves Perriard, Thomas Guillaume Martinez, Marjan Ghorbani, Sean Thomas, Guilain Lionel Germain Lang

This paper presents an innovative approach to creating Shape Memory Alloys (SMA)-based actuators that are lightweight, compact, and capable of providing large strokes. Inspired by the Kirigami structure, an SMA actuator is designed using the Ω -pattern, wh ...
2023
Show more
Related concepts (1)
Shape-memory alloy
In metallurgy, a shape-memory alloy (SMA) is an alloy that can be deformed when cold but returns to its pre-deformed ("remembered") shape when heated. It is also known in other names such as memory metal, memory alloy, smart metal, smart alloy, and muscle wire. The "memorized geometry" can be modified by fixating the desired geometry and subjecting it to a thermal treatment, for example a wire can be taught to memorize the shape of a coil spring.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.