Concept

Sensory decussation

In neuroanatomy, the sensory decussation or decussation of the lemnisci is a decussation (i.e. crossover) of axons from the gracile nucleus and cuneate nucleus, which are responsible for fine touch, vibration, proprioception and two-point discrimination of the body. The fibres of this decussation are called the internal arcuate fibres and are found at the superior aspect of the closed medulla superior to the motor decussation. It is part of the second neuron in the posterior column–medial lemniscus pathway. At the level of the closed medulla in the posterior white column, two large nuclei namely the gracile nucleus and the cuneate nucleus can be found. The two nuclei receive the impulse from the two ascending tracts: fasciculus gracilis and fasciculus cuneatus. After the two tracts terminate upon these nuclei, the heavily myelinated fibres arise and ascend anteromedially around the periaqueductal gray as internal arcuate fibres. These fibres decussate (cross) to the contralateral (opposite) side, so called the sensory decussation. The ascending bundle after the decussation is called the medial lemniscus. Unlike other ascending tracts of the brain, fibres of the medial lemniscus do not give off collateral branches as they travel along the brainstem. The fibres that make up the sensory decussation are responsible for fine touch, proprioception and two-point discrimination of the whole body excluding the head. File:Gray690.png|Deep dissection of brain-stem. Ventral view. File:Gray692.png|Superior terminations of the posterior fasciculi of the medulla spinalis.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (2)
Brain Anatomy
Covers the divisions of the nervous system, brain structure, cranial nerves, and brain conditions.
Peripheral sensory feedback
Explores the importance and organization of sensory feedback in the peripheral nervous system, including artificial implementations.
Related publications (7)

Task-driven neural network models predict neural dynamics of proprioception: Neural network model weights

Alexander Mathis, Alberto Silvio Chiappa, Alessandro Marin Vargas, Axel Bisi

Proprioception tells the brain the state of the body based on distributed sensors in the body. However, the principles that govern proprioceptive processing from those distributed sensors are poorly understood. Here, we employ a task-driven neural network ...
EPFL Infoscience2024

Task-driven neural network models predict neural dynamics of proprioception: Experimental data, activations and predictions of neural network models

Alexander Mathis, Alberto Silvio Chiappa, Alessandro Marin Vargas, Axel Bisi

Here we provide the neural data, activation and predictions for the best models and result dataframes of our article "Task-driven neural network models predict neural dynamics of proprioception". It contains the behavioral and neural experimental data (cu ...
EPFL Infoscience2024

Task-driven neural network models predict neural dynamics of proprioception

Alexander Mathis, Alberto Silvio Chiappa, Alessandro Marin Vargas, Axel Bisi

Proprioception tells the brain the state of the body based on distributed sensors in the body. However, the principles that govern proprioceptive processing from those distributed sensors are poorly understood. Here, we employ a task-driven neural network ...
2023
Show more
Related concepts (5)
Internal arcuate fibers
In neuroanatomy, the internal arcuate fibers or internal arcuate tract are the axons of second-order sensory neurons that compose the gracile and cuneate nuclei of the medulla oblongata. These second-order neurons begin in the gracile and cuneate nuclei in the medulla. They receive input from first-order sensory neurons, which provide sensation to many areas of the body and have cell bodies in the dorsal root ganglia of the dorsal root of the spinal nerves.
Medial lemniscus
In neuroanatomy, the medial lemniscus, also known as Reil's band or Reil's ribbon (for German anatomist Johann Christian Reil), is a large ascending bundle of heavily myelinated axons that decussate (cross) in the brainstem, specifically in the medulla oblongata. The medial lemniscus is formed by the crossings of the internal arcuate fibers. The internal arcuate fibers are composed of axons of nucleus gracilis and nucleus cuneatus. The axons of the nucleus gracilis and nucleus cuneatus in the medial lemniscus have cell bodies that lie contralaterally.
Dorsal column nuclei
In neuroanatomy, the dorsal column nuclei are a pair of nuclei in the dorsal columns in the brainstem. The name refers collectively to the cuneate nucleus and gracile nucleus, which are situated at the lower end of the medulla oblongata. Both nuclei contain second-order neurons of the dorsal column–medial lemniscus pathway, which convey fine touch and proprioceptive information from the body to the brain. The dorsal column nuclei project to the thalamus.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.