Proton decayIn particle physics, proton decay is a hypothetical form of particle decay in which the proton decays into lighter subatomic particles, such as a neutral pion and a positron. The proton decay hypothesis was first formulated by Andrei Sakharov in 1967. Despite significant experimental effort, proton decay has never been observed. If it does decay via a positron, the proton's half-life is constrained to be at least 1.67e34 years.
Cosmic timeCosmic time, or cosmological time, is the time coordinate commonly used in the Big Bang models of physical cosmology. Such time coordinate may be defined for a homogeneous, expanding universe so that the universe has the same density everywhere at each moment in time (the fact that this is possible means that the universe is, by definition, homogeneous). The clocks measuring cosmic time should move along the Hubble flow.
Steady-state modelIn cosmology, the steady-state model or steady state theory is an alternative to the Big Bang theory of evolution of the universe. In the steady-state model, the density of matter in the expanding universe remains unchanged due to a continuous creation of matter, thus adhering to the perfect cosmological principle, a principle that says that the observable universe is always the same at any time and any place. From the 1940s to the 1960s, the astrophysical community was divided between supporters of the Big Bang theory and supporters of the steady-state theory.
Cosmological horizonA cosmological horizon is a measure of the distance from which one could possibly retrieve information. This observable constraint is due to various properties of general relativity, the expanding universe, and the physics of Big Bang cosmology. Cosmological horizons set the size and scale of the observable universe. This article explains a number of these horizons. Particle horizon The particle horizon (also called the cosmological horizon, the comoving horizon, or the cosmic light horizon) is the maximum distance from which light from particles could have traveled to the observer in the age of the universe.
CosmogonyCosmogony is any model concerning the origin of the cosmos or the universe. In astronomy, cosmogony refers to the study of the origin of particular astrophysical objects or systems, and is most commonly used in reference to the origin of the universe, the Solar System, or the Earth–Moon system. The prevalent cosmological model of the early development of the universe is the Big Bang theory. Sean M.
Illustris projectThe Illustris project is an ongoing series of astrophysical simulations run by an international collaboration of scientists. The aim was to study the processes of galaxy formation and evolution in the universe with a comprehensive physical model. Early results were described in a number of publications following widespread press coverage. The project publicly released all data produced by the simulations in April, 2015. Key developers of the Illustris simulation have been Volker Springel (Max-Planck-Institut für Astrophysik) and Mark Vogelsberger (Massachusetts Institute of Technology).
Hubble volumeIn cosmology, a Hubble volume (named for the astronomer Edwin Hubble) or Hubble sphere, Hubble bubble, subluminal sphere, causal sphere and sphere of causality is a spherical region of the observable universe surrounding an observer beyond which objects recede from that observer at a rate greater than the speed of light due to the expansion of the universe. The Hubble volume is approximately equal to 1031 cubic light years (or about 1079 cubic meters).
Dimensionless physical constantIn physics, a dimensionless physical constant is a physical constant that is dimensionless, i.e. a pure number having no units attached and having a numerical value that is independent of whatever system of units may be used. In aerodynamics for example, if one considers one particular airfoil, the Reynolds number value of the laminar–turbulent transition is one relevant dimensionless physical constant of the problem. However, it is strictly related to the particular problem: for example, it is related to the airfoil being considered and also to the type of fluid in which it moves.
Recessional velocityRecessional velocity is the rate at which an extragalactic astronomical object recedes (becomes more distant) from an observer as a result of the expansion of the universe. It can be measured by observing the wavelength shifts of spectral lines emitted by the object, known as the object's cosmological redshift. Hubble's law is the relationship between a galaxy's distance and its recessional velocity, which is approximately linear for galaxies at distances of up to a few hundred megaparsecs.
1,000,000,0001,000,000,000 (one billion, short scale; one thousand million or one milliard, one yard, long scale) is the natural number following 999,999,999 and preceding 1,000,000,001. With a number, "billion" can be abbreviated as b, bil or bn. In standard form, it is written as 1 × 109. The metric prefix giga indicates 1,000,000,000 times the base unit. Its symbol is G. One billion years may be called an eon in astronomy or geology. Previously in British English (but not in American English), the word "billion" referred exclusively to a million millions (1,000,000,000,000).