Summary
The Diesel cycle is a combustion process of a reciprocating internal combustion engine. In it, fuel is ignited by heat generated during the compression of air in the combustion chamber, into which fuel is then injected. This is in contrast to igniting the fuel-air mixture with a spark plug as in the Otto cycle (four-stroke/petrol) engine. Diesel engines are used in aircraft, automobiles, power generation, diesel–electric locomotives, and both surface ships and submarines. The Diesel cycle is assumed to have constant pressure during the initial part of the combustion phase ( to in the diagram, below). This is an idealized mathematical model: real physical diesels do have an increase in pressure during this period, but it is less pronounced than in the Otto cycle. In contrast, the idealized Otto cycle of a gasoline engine approximates a constant volume process during that phase. The image shows a p-V diagram for the ideal Diesel cycle; where is pressure and V the volume or the specific volume if the process is placed on a unit mass basis. The idealized Diesel cycle assumes an ideal gas and ignores combustion chemistry, exhaust- and recharge procedures and simply follows four distinct processes: 1→2 : isentropic compression of the fluid (blue) 2→3 : constant pressure heating (red) 3→4 : isentropic expansion (yellow) 4→1 : constant volume cooling (green) The Diesel engine is a heat engine: it converts heat into work. During the bottom isentropic processes (blue), energy is transferred into the system in the form of work , but by definition (isentropic) no energy is transferred into or out of the system in the form of heat. During the constant pressure (red, isobaric) process, energy enters the system as heat . During the top isentropic processes (yellow), energy is transferred out of the system in the form of , but by definition (isentropic) no energy is transferred into or out of the system in the form of heat. During the constant volume (green, isochoric) process, some of energy flows out of the system as heat through the right depressurizing process .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (8)
Heat engine
In thermodynamics and engineering, a heat engine is a system that converts heat to usable energy, particularly mechanical energy, which can then be used to do mechanical work. While originally conceived in the context of mechanical energy, the concept of the heat engine has been applied to various other kinds of energy, particularly electrical, since at least the late 19th century. The heat engine does this by bringing a working substance from a higher state temperature to a lower state temperature.
Stirling engine
A Stirling engine is a heat engine that is operated by the cyclic compression and expansion of air or other gas (the working fluid) between different temperatures, resulting in a net conversion of heat energy to mechanical work. More specifically, the Stirling engine is a closed-cycle regenerative heat engine, with a permanent gaseous working fluid. Closed-cycle, in this context, means a thermodynamic system in which the working fluid is permanently contained within the system.
Diesel cycle
The Diesel cycle is a combustion process of a reciprocating internal combustion engine. In it, fuel is ignited by heat generated during the compression of air in the combustion chamber, into which fuel is then injected. This is in contrast to igniting the fuel-air mixture with a spark plug as in the Otto cycle (four-stroke/petrol) engine. Diesel engines are used in aircraft, automobiles, power generation, diesel–electric locomotives, and both surface ships and submarines.
Show more
Related courses (4)
ME-251: Thermodynamics and energetics I
Introduction aux principes de la thermodynamique, propriétés thermodynamiques de la matière et à leur calcul. Les étudiants maîtriseront les concepts de conservation (chaleur, masse, quantité de mouve
ME-551: Engines and fuel cells
The students describe and explain the thermodynamic and operating principles of internal combustion engines and all fuel cell types, identify the determining physical parameters for the operating regi
PHYS-106(a): General physics : thermodynamics
Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Show more
Related lectures (18)
Vapor Power Systems
Explores vapor power systems, emphasizing the Rankine cycle and its enhancements for increased efficiency.
Internal Combustion Engines: Otto and Diesel Cycles
Explores the Otto and Diesel cycles in internal combustion engines.
Show more