Summary
A nucleoside triphosphate is a nucleoside containing a nitrogenous base bound to a 5-carbon sugar (either ribose or deoxyribose), with three phosphate groups bound to the sugar. They are the molecular precursors of both DNA and RNA, which are chains of nucleotides made through the processes of DNA replication and transcription. Nucleoside triphosphates also serve as a source of energy for cellular reactions and are involved in signalling pathways. Nucleoside triphosphates cannot be absorbed well, so they are typically synthesized within the cell. Synthesis pathways differ depending on the specific nucleoside triphosphate being made, but given the many important roles of nucleoside triphosphates, synthesis is tightly regulated in all cases. Nucleoside analogues may also be used to treat viral infections. For example, azidothymidine (AZT) is a nucleoside analogue used to prevent and treat HIV/AIDS. The term nucleoside refers to a nitrogenous base linked to a 5-carbon sugar (either ribose or deoxyribose). Nucleotides are nucleosides covalently linked to one or more phosphate groups. To provide information about the number of phosphates, nucleotides may instead be referred to as nucleoside (mono, di, or tri) phosphates. Thus, nucleoside triphosphates are a type of nucleotide. Nucleotides are commonly abbreviated with 3 letters (4 or 5 in case of deoxy- or dideoxy-nucleotides). The first letter indicates the identity of the nitrogenous base (e.g. A for adenine, G for guanine), the second letter indicates the number of phosphates (mono, di, tri), and the third letter is P, standing for phosphate. Nucleoside triphosphates that contain ribose as the sugar are conventionally abbreviated as NTPs, while nucleoside triphosphates containing deoxyribose as the sugar are abbreviated as dNTPs. For example, dATP stands for deoxyribose adenosine triphosphate. NTPs are the building blocks of RNA, and dNTPs are the building blocks of DNA. The carbons of the sugar in a nucleoside triphosphate are numbered around the carbon ring starting from the original carbonyl of the sugar.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.