Concept

Minkowski's bound

In algebraic number theory, Minkowski's bound gives an upper bound of the norm of ideals to be checked in order to determine the class number of a number field K. It is named for the mathematician Hermann Minkowski. Let D be the discriminant of the field, n be the degree of K over , and be the number of complex embeddings where is the number of real embeddings. Then every class in the ideal class group of K contains an integral ideal of norm not exceeding Minkowski's bound Minkowski's constant for the field K is this bound MK. Since the number of integral ideals of given norm is finite, the finiteness of the class number is an immediate consequence, and further, the ideal class group is generated by the prime ideals of norm at most MK. Minkowski's bound may be used to derive a lower bound for the discriminant of a field K given n, r1 and r2. Since an integral ideal has norm at least one, we have 1 ≤ MK, so that For n at least 2, it is easy to show that the lower bound is greater than 1, so we obtain Minkowski's Theorem, that the discriminant of every number field, other than Q, is non-trivial. This implies that the field of rational numbers has no unramified extension. The result is a consequence of Minkowski's theorem.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.