Concept

Borne de Minkowski

En théorie algébrique des nombres, la borne de Minkowski donne un majorant de la norme des idéaux à considérer pour déterminer le nombre de classes d'un corps de nombres K. Il porte le nom du mathématicien Hermann Minkowski. Soit D le discriminant de K, n son degré sur , et le nombre de plongements complexes où est le nombre de plongements réels. Alors chaque classe du groupe des classes d'idéaux de K contient un idéal de O dont la norme est inférieure ou égale à la borne de Minkowski La constante de Minkowski pour le corps K est cette borne MK. Puisque le nombre d'idéaux fractionnaire de norme donnée est fini, la finitude du nombre de classes est une conséquence immédiate, et de plus, le groupe des classes est engendré par les idéaux premiers de norme au plus MK. La borne de Minkowski peut être utilisée pour déduire un minorant du discriminant de K en fonction de n, r1 et r2. Puisque la norme d'un idéal non nul vaut au moins 1, on a 1 ≤ MK, de sorte que Pour n supérieur ou égal à 2, il est facile de montrer que ce minorant est strictement supérieur à 1 ; on obtient donc le théorème de Minkowski, statuant que le discriminant de tout corps de nombres autre que Q est non trivial. Cela implique que le corps des rationnels n'a aucune extension non ramifiée non triviale.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.