Differential cryptanalysis is a general form of cryptanalysis applicable primarily to block ciphers, but also to stream ciphers and cryptographic hash functions. In the broadest sense, it is the study of how differences in information input can affect the resultant difference at the output. In the case of a block cipher, it refers to a set of techniques for tracing differences through the network of transformation, discovering where the cipher exhibits non-random behavior, and exploiting such properties to recover the secret key (cryptography key). The discovery of differential cryptanalysis is generally attributed to Eli Biham and Adi Shamir in the late 1980s, who published a number of attacks against various block ciphers and hash functions, including a theoretical weakness in the Data Encryption Standard (DES). It was noted by Biham and Shamir that DES was surprisingly resistant to differential cryptanalysis but small modifications to the algorithm would make it much more susceptible. In 1994, a member of the original IBM DES team, Don Coppersmith, published a paper stating that differential cryptanalysis was known to IBM as early as 1974, and that defending against differential cryptanalysis had been a design goal. According to author Steven Levy, IBM had discovered differential cryptanalysis on its own, and the NSA was apparently well aware of the technique. IBM kept some secrets, as Coppersmith explains: "After discussions with NSA, it was decided that disclosure of the design considerations would reveal the technique of differential cryptanalysis, a powerful technique that could be used against many ciphers. This in turn would weaken the competitive advantage the United States enjoyed over other countries in the field of cryptography." Within IBM, differential cryptanalysis was known as the "T-attack" or "Tickle attack". While DES was designed with resistance to differential cryptanalysis in mind, other contemporary ciphers proved to be vulnerable. An early target for the attack was the FEAL block cipher.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
COM-501: Advanced cryptography
This course reviews some failure cases in public-key cryptography. It introduces some cryptanalysis techniques. It also presents fundamentals in cryptography such as interactive proofs. Finally, it pr
COM-401: Cryptography and security
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
Related lectures (22)
Cryptanalysis: Conventional
Explores conventional Cryptanalysis methods, including Differential and Linear Cryptanalysis, and delves into the significance of Hypothesis Testing in Cryptography.
Cryptanalysis: Decorrelation & Proving Security
Explores cryptanalysis through decorrelation techniques and proving security in conventional cryptography, covering topics like distinguishing functions, matrices, and the random oracle model.
Cryptanalysis: The Power of Interaction
Explores the power of interaction in cryptographic primitives and conventional cryptanalysis techniques.
Show more
Related publications (76)

Cryptanalysis of LowMC instances using single plaintext/ciphertext pair

Serge Vaudenay, Subhadeep Banik, Fatma Betül Durak, Khashayar Barooti

Arguably one of the main applications of the LowMC family ciphers is in the post-quantum signature scheme PICNIC. Although LowMC family ciphers have been studied from a cryptanalytic point of view before, none of these studies were directly concerned with ...
RUHR-UNIV BOCHUM, HORST GORTZ INST IT-SICHERHEIT2020

Are Cloud FPGAs Really Vulnerable to Power Analysis Attacks?

Francesco Regazzoni, Mirjana Stojilovic, Louis Coulon, Ognjen Glamocanin

Recent works have demonstrated the possibility of extracting secrets from a cryptographic core running on an FPGA by means of remote power analysis attacks. To mount these attacks, an adversary implements a voltage fluctuation sensor in the FPGA logic, rec ...
2020

Sublinear Bounds on the Distinguishing Advantage for Multiple Samples

Serge Vaudenay

The maximal achievable advantage of a (computationally unbounded) distinguisher to determine whether a source ZZ is distributed according to distribution P0P_0 or P1P_1, when given access to one sample of ZZ, is characterized by the statistical distance ...
Springer, Cham2020
Show more
Related concepts (15)
Cryptography
Cryptography, or cryptology (from κρυπτός "hidden, secret"; and γράφειν graphein, "to write", or -λογία -logia, "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others.
National Security Agency
The National Security Agency (NSA) is a national-level intelligence agency of the United States Department of Defense, under the authority of the Director of National Intelligence (DNI). The NSA is responsible for global monitoring, collection, and processing of information and data for foreign and domestic intelligence and counterintelligence purposes, specializing in a discipline known as signals intelligence (SIGINT). The NSA is also tasked with the protection of U.S. communications networks and information systems.
S-box
In cryptography, an S-box (substitution-box) is a basic component of symmetric key algorithms which performs substitution. In block ciphers, they are typically used to obscure the relationship between the key and the ciphertext, thus ensuring Shannon's property of confusion. Mathematically, an S-box is a nonlinear vectorial Boolean function. In general, an S-box takes some number of input bits, m, and transforms them into some number of output bits, n, where n is not necessarily equal to m.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.