Mains electricity by country includes a list of countries and territories, with the plugs, voltages and frequencies they commonly use for providing electrical power to low voltage appliances, equipment, and lighting typically found in homes and offices. (For industrial machinery, see industrial and multiphase power plugs and sockets.) Some countries have more than one voltage available. For example, in North America the supply to most premises is split-phase, with 240 volts between phases and 120 volts between either phase and neutral. Most sockets are connected to 120 V and neutral. By connecting across the phases, 240 V is available for large appliances. Often different sockets are mandated for different voltage or current levels. Voltage, frequency, and plug type vary, but large regions may use common standards. Physical compatibility of receptacles may not ensure compatibility of voltage, frequency, or connection to earth (ground), including plugs and cords. In some areas, older standards may still exist. Foreign enclaves, extraterritorial government installations, or buildings frequented by tourists may support plugs not otherwise used in a country, for the convenience of travellers. The International Electrotechnical Commission (IEC) publishes a web microsite World Plugs which provides the main source for this page, except where other sources are indicated. World Plugs includes some history, a description of plug types, and a list of countries giving the type(s) used and the mains voltage and frequency. Although useful for quick reference, especially for travellers, IEC World Plugs may not be regarded as totally accurate, as illustrated by the examples in the plugs section below, and errors may exist, such as Indonesia being listed as using both 220 V and 110 V when the Indonesian Standard SPLN 1 clearly states the voltage as 230 V, and the official travel website says "electric power supply is 220 volts in all regions." Voltages in this article are the nominal single-phase supply voltages, or split-phase supply voltages.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
EE-370: Electric power systems
Ce cours décrit les composants d'un réseau électrique. Il explique le fonctionnement des réseaux électriques et leurs limites d'utilisation. Il introduit les outils de base permettant de les piloter.
Related lectures (20)
Power Network State Estimation
Covers power network state estimation, telemetry-based state estimation, and loss calculation.
3-Phase Systems: Voltage Relationships
Explores voltage relationships in 3-phase systems, power calculations, and implications of unbalanced systems.
Electricity Generation: Transformers & Induction
Covers the principles of electricity generation through transformers and induction.
Show more
Related publications (29)

Active Voltage Balancing with Seamless Integration into Dual Gate Driver for Series Connection of SiC MOSFETs

Drazen Dujic

The versatility of half-bridge configuration of silicon carbide (SiC) metal-oxide-semiconductor field-effect transistor (MOSFET) power module contributes to its widespread adoption, highlighting the popularity and significance of its corresponding dual gat ...
2024

A Dual-Channel Gate Driver Design with Active Voltage Balancing Circuit for Series Connection of SiC MOSFETs

Drazen Dujic

Dual-channel gate driver is commonly utilized in the industry for accommodating the widespread use of half-bridge power modules. As wide-bandgap devices become increasingly prevalent due to their superior switching characteristics compared with conventiona ...
2024

Control upgrade for the TCV coils power supplies

Damien Fasel, Ugo Siravo, Jérémie Dubray, Nicolas Cherix

The Tokamak a` Configuration Variable (TCV) coil converters are fed, during the plasma pulse, by a flywheel generator (FG) providing the AC voltages few seconds before the plasma pulse. The synchronization with the 120 Hz frequency delivered by the FG, var ...
ELSEVIER SCIENCE SA2023
Show more
Related concepts (4)
Electrical grid
An electrical grid is an interconnected network for electricity delivery from producers to consumers. Electrical grids vary in size and can cover whole countries or continents. It consists of: power stations: often located near energy and away from heavily populated areas electrical substations to step voltage up or down electric power transmission to carry power long distances electric power distribution to individual customers, where voltage is stepped down again to the required service voltage(s).
Mains electricity
Mains electricity or utility power, power grid, domestic power, and wall power, or, in some parts of Canada, hydro, is a general-purpose alternating-current (AC) electric power supply. It is the form of electrical power that is delivered to homes and businesses through the electric grid in many parts of the world. People use this electricity to power everyday items (such as domestic appliances, televisions and lamps) by plugging them into a wall outlet. The voltage and frequency of electric power differs between regions.
Alternating current
Alternating current (AC) is an electric current which periodically reverses direction and changes its magnitude continuously with time, in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in which electric power is delivered to businesses and residences, and it is the form of electrical energy that consumers typically use when they plug kitchen appliances, televisions, fans and electric lamps into a wall socket. A common source of DC power is a battery cell in a flashlight.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.