The Heaviside step function, or the unit step function, usually denoted by H or θ (but sometimes u, 1 or ), is a step function named after Oliver Heaviside, the value of which is zero for negative arguments and one for positive arguments. It is an example of the general class of step functions, all of which can be represented as linear combinations of translations of this one. The function was originally developed in operational calculus for the solution of differential equations, where it represents a signal that switches on at a specified time and stays switched on indefinitely. Oliver Heaviside, who developed the operational calculus as a tool in the analysis of telegraphic communications, represented the function as 1. The Heaviside function may be defined as: a piecewise function: using the Iverson bracket notation: an indicator function: the derivative of the ramp function: The Dirac delta function is the derivative of the Heaviside function Hence the Heaviside function can be considered to be the integral of the Dirac delta function. This is sometimes written as although this expansion may not hold (or even make sense) for x = 0, depending on which formalism one uses to give meaning to integrals involving δ. In this context, the Heaviside function is the cumulative distribution function of a random variable which is almost surely 0. (See constant random variable.) In operational calculus, useful answers seldom depend on which value is used for H(0), since H is mostly used as a distribution. However, the choice may have some important consequences in functional analysis and game theory, where more general forms of continuity are considered. Some common choices can be seen below. Approximations to the Heaviside step function are of use in biochemistry and neuroscience, where logistic approximations of step functions (such as the Hill and the Michaelis–Menten equations) may be used to approximate binary cellular switches in response to chemical signals.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (14)
EE-205: Signals and systems (for EL)
Ce cours pose les bases d'un concept essentiel en ingénierie : la notion de système. Plus spécifiquement, le cours présente la théorie des systèmes linéaires invariants dans le temps (SLIT), qui sont
PHYS-441: Statistical physics of biomacromolecules
Introduction to the application of the notions and methods of theoretical physics to problems in biology.
MATH-206: Analysis IV
En son coeur, c'est un cours d'analyse fonctionnelle pour les physiciens et traite les bases de théorie de mesure, des espaces des fonctions et opérateurs linéaires.
Show more
Related lectures (43)
Polymer Behavior: Force-Extension Curve
Delves into the entropic behavior of polymers through force-extension curves.
Laplace Transforms in Chemistry and Engineering
Covers Laplace transforms in chemistry and engineering, exploring their applications and properties.
Laplace Transform: Basics
Introduces Laplace transform, ROC, and LTI systems with transfer functions and frequency response.
Show more
Related publications (36)

Stability: a search for structure

Wouter Jongeneel

In this thesis we study stability from several viewpoints. After covering the practical importance, the rich history and the ever-growing list of manifestations of stability, we study the following. (i) (Statistical identification of stable dynamical syste ...
EPFL2024

The hunt for the Karman 'constant' revisited

Peter Monkewitz

The log law of the wall, joining the inner, near-wall mean velocity profile (MVP) in wall-bounded turbulent flows to the outer region, has been a permanent fixture of turbulence research for over hundred years, but there is still no general agreement on th ...
CAMBRIDGE UNIV PRESS2023

Addressing fairness in classification with a model-agnostic multi-objective algorithm

Boi Faltings, Claudiu-Cristian Musat, Diego Matteo Antognini

The goal of fairness in classification is to learn a classifier that does not discriminate against groups of individuals based on sensitive attributes, such as race and gender. One approach to designing fair algorithms is to use relaxations of fairness not ...
2021
Show more
Related people (2)
Related concepts (23)
Sign function
In mathematics, the sign function or signum function (from signum, Latin for "sign") is a function that returns the sign of a real number. In mathematical notation the sign function is often represented as . The signum function of a real number is a piecewise function which is defined as follows: Any real number can be expressed as the product of its absolute value and its sign function: It follows that whenever is not equal to 0 we have Similarly, for any real number , We can also ascertain that: The signum function is the derivative of the absolute value function, up to (but not including) the indeterminacy at zero.
Step function
In mathematics, a function on the real numbers is called a step function if it can be written as a finite linear combination of indicator functions of intervals. Informally speaking, a step function is a piecewise constant function having only finitely many pieces. A function is called a step function if it can be written as for all real numbers where , are real numbers, are intervals, and is the indicator function of : In this definition, the intervals can be assumed to have the following two properties: The intervals are pairwise disjoint: for The union of the intervals is the entire real line: Indeed, if that is not the case to start with, a different set of intervals can be picked for which these assumptions hold.
Sigmoid function
A sigmoid function is a mathematical function having a characteristic "S"-shaped curve or sigmoid curve. A common example of a sigmoid function is the logistic function shown in the first figure and defined by the formula: Other standard sigmoid functions are given in the Examples section. In some fields, most notably in the context of artificial neural networks, the term "sigmoid function" is used as an alias for the logistic function.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.