Summary
The term kernel is used in statistical analysis to refer to a window function. The term "kernel" has several distinct meanings in different branches of statistics. In statistics, especially in Bayesian statistics, the kernel of a probability density function (pdf) or probability mass function (pmf) is the form of the pdf or pmf in which any factors that are not functions of any of the variables in the domain are omitted. Note that such factors may well be functions of the parameters of the pdf or pmf. These factors form part of the normalization factor of the probability distribution, and are unnecessary in many situations. For example, in pseudo-random number sampling, most sampling algorithms ignore the normalization factor. In addition, in Bayesian analysis of conjugate prior distributions, the normalization factors are generally ignored during the calculations, and only the kernel considered. At the end, the form of the kernel is examined, and if it matches a known distribution, the normalization factor can be reinstated. Otherwise, it may be unnecessary (for example, if the distribution only needs to be sampled from). For many distributions, the kernel can be written in closed form, but not the normalization constant. An example is the normal distribution. Its probability density function is and the associated kernel is Note that the factor in front of the exponential has been omitted, even though it contains the parameter , because it is not a function of the domain variable . The kernel of a reproducing kernel Hilbert space is used in the suite of techniques known as kernel methods to perform tasks such as statistical classification, regression analysis, and cluster analysis on data in an implicit space. This usage is particularly common in machine learning. In nonparametric statistics, a kernel is a weighting function used in non-parametric estimation techniques. Kernels are used in kernel density estimation to estimate random variables' density functions, or in kernel regression to estimate the conditional expectation of a random variable.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
COM-406: Foundations of Data Science
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
MATH-517: Statistical computation and visualisation
The course will provide the opportunity to tackle real world problems requiring advanced computational skills and visualisation techniques to complement statistical thinking. Students will practice pr
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Show more
Related lectures (91)
Mercer Theorem and Kernels
Explores the Mercer Theorem, Kernels, and their role in machine learning applications.
Feature Expansion: Kernels and KNN
Covers feature expansion, kernels, and K-nearest neighbors, including non-linearity, SVM, and Gaussian kernels.
Data Representations: Learning Methods
Covers polynomial feature expansion, kernel functions, regression, and SVM, emphasizing the importance of choosing functions for feature expansion.
Show more
Related publications (101)

Bayes-optimal Learning of Deep Random Networks of Extensive-width

Florent Gérard Krzakala, Lenka Zdeborová, Hugo Chao Cui

We consider the problem of learning a target function corresponding to a deep, extensive-width, non-linear neural network with random Gaussian weights. We consider the asymptotic limit where the number of samples, the input dimension and the network width ...
2023

Density Estimation In Rkhs With Application To Korobov Spaces In High Dimensions

Fabio Nobile, Yoshihito Kazashi

A kernel method for estimating a probability density function from an independent and identically distributed sample drawn from such density is presented. Our estimator is a linear combination of kernel functions, the coefficients of which are determined b ...
SIAM PUBLICATIONS2023

End-to-end kernel learning via generative random Fourier features

Fanghui Liu, Jie Yang

Random Fourier features (RFFs) provide a promising way for kernel learning in a spectral case. Current RFFs-based kernel learning methods usually work in a two-stage way. In the first-stage process, learn-ing an optimal feature map is often formulated as a ...
ELSEVIER SCI LTD2023
Show more
Related concepts (11)
Kernel smoother
A kernel smoother is a statistical technique to estimate a real valued function as the weighted average of neighboring observed data. The weight is defined by the kernel, such that closer points are given higher weights. The estimated function is smooth, and the level of smoothness is set by a single parameter. Kernel smoothing is a type of weighted moving average. Let be a kernel defined by where: is the Euclidean norm is a parameter (kernel radius) D(t) is typically a positive real valued function, whose value is decreasing (or not increasing) for the increasing distance between the X and X0.
Kernel density estimation
In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights. KDE answers a fundamental data smoothing problem where inferences about the population are made, based on a finite data sample. In some fields such as signal processing and econometrics it is also termed the Parzen–Rosenblatt window method, after Emanuel Parzen and Murray Rosenblatt, who are usually credited with independently creating it in its current form.
Kernel method
In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. The general task of pattern analysis is to find and study general types of relations (for example clusters, rankings, principal components, correlations, classifications) in datasets.
Show more
Related MOOCs (13)
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Show more