Conglomerate (kənˈɡlɒmərɪt) is a clastic sedimentary rock that is composed of a substantial fraction of rounded to subangular gravel-size clasts. A conglomerate typically contains a matrix of finer-grained sediments, such as sand, silt, or clay, which fills the interstices between the clasts. The clasts and matrix are typically cemented by calcium carbonate, iron oxide, silica, or hardened clay.
Conglomerates form by the consolidation and lithification of gravel. They can be found in sedimentary rock sequences of all ages but probably make up less than 1 percent by weight of all sedimentary rocks. In terms of origin and depositional mechanisms, they are closely related to sandstones and exhibit many of the same types of sedimentary structures, e.g., tabular and trough cross-bedding and graded bedding.
Fanglomerates are poorly sorted, matrix-rich conglomerates that originated as debris flows on alluvial fans and likely contain the largest accumulations of gravel in the geologic record.
Conglomerates may be named and classified by the:
Amount and type of matrix present
Composition of gravel-size clasts they contain
Size range of gravel-size clasts present
The classification method depends on the type and detail of research being conducted.
A sedimentary rock composed largely of gravel is first named according to the roundness of the gravel. If the gravel clasts that comprise it are largely well-rounded to subrounded, it is a conglomerate. If the gravel clasts that comprise it are largely angular, it is a breccia. Such breccias can be called sedimentary breccias to differentiate them from other types of breccia, e.g. volcanic and fault breccias. Sedimentary rocks that contain a mixture of rounded and angular gravel clasts are sometimes called breccio-conglomerate.
Conglomerates contain at least 30% of rounded to subangular clasts larger than in diameter, e.g., granules, pebbles, cobbles, and boulders. However, conglomerates are rarely composed entirely of gravel-size clasts.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours traite les interactions entre l'hydraulique, le transport solide par charriage et l'espace cours d'eau à l'origine de la morphologie et de la richesse des habitats. La théorie de régime est p
Clastic rocks are composed of fragments, or clasts, of pre-existing minerals and rock. A clast is a fragment of geological detritus, chunks, and smaller grains of rock broken off other rocks by physical weathering. Geologists use the term clastic to refer to sedimentary rocks and particles in sediment transport, whether in suspension or as bed load, and in sediment deposits. Clastic sedimentary rocks are rocks composed predominantly of broken pieces or clasts of older weathered and eroded rocks.
An alluvial fan is an accumulation of sediments that fans outwards from a concentrated source of sediments, such as a narrow canyon emerging from an escarpment. They are characteristic of mountainous terrain in arid to semiarid climates, but are also found in more humid environments subject to intense rainfall and in areas of modern glaciation. They range in area from less than to almost . Alluvial fans typically form where flow emerges from a confined channel and is free to spread out and infiltrate the surface.
A pebble is a clast of rock with a particle size of based on the Udden-Wentworth scale of sedimentology. Pebbles are generally considered larger than granules ( in diameter) and smaller than cobbles ( in diameter). A rock made predominantly of pebbles is termed a conglomerate. Pebble tools are among the earliest known man-made artifacts, dating from the Palaeolithic period of human history. A beach composed chiefly of surface pebbles is commonly termed a shingle beach.
Explores the assessment and classification of streams using ecological indices and emphasizes the importance of protecting and restoring river systems.
Covers sediment dynamics, watercourse capacity, and protective measures in alluvial systems.
,
Sediment transport in geophysical boundary layer flows has relevance to a broad spectrum of sciences ranging from the physical and chemical, to the biological, ecological and geological. Advances in sediment transport modelling and prediction strongly suff ...
In computational hydraulics models, predicting bed topography and bedload transport with sufficient accuracy remains a significant challenge. An accurate assessment of a river's sediment transport rate necessitates a prior understanding of its bed topograp ...
In the canton of Bern, Switzerland, the “Le Bez” torrent is known for its flash floods, causing sediment and wood debris buildup in Villeret village settled on the alluvial fan. To mitigate this issue, a sediment/wood trap system is being implemented upstr ...