Summary
An alluvial fan is an accumulation of sediments that fans outwards from a concentrated source of sediments, such as a narrow canyon emerging from an escarpment. They are characteristic of mountainous terrain in arid to semiarid climates, but are also found in more humid environments subject to intense rainfall and in areas of modern glaciation. They range in area from less than to almost . Alluvial fans typically form where flow emerges from a confined channel and is free to spread out and infiltrate the surface. This reduces the carrying capacity of the flow and results in deposition of sediments. The flow can take the form of infrequent debris flows or one or more ephemeral or perennial streams. Alluvial fans are common in the geologic record, such as in the Triassic basins of eastern North America and the New Red Sandstone of south Devon. Such fan deposits likely contain the largest accumulations of gravel in the geologic record. Alluvial fans have also been found on Mars and Titan, showing that fluvial processes have occurred on other worlds. Some of the largest alluvial fans are found along the Himalaya mountain front on the Indo-Gangetic plain. A shift of the feeder channel (a nodal avulsion) can lead to catastrophic flooding, as occurred on the Kosi River fan in 2008. An alluvial fan is an accumulation of sediments that fans out from a concentrated source of sediments, such as a narrow canyon emerging from an escarpment. This accumulation is shaped like a section of a shallow cone, with its apex at the source of sediments. Alluvial fans vary greatly in size, from only a few meters across at the base to as much as 150 kilometers across, with a slope of 1.5 to 25 degrees. Some giant alluvial fans have areas of almost . The slope measured from the apex is generally concave, with the steepest slope near the apex (the proximal fan or fanhead) and becoming less steep further out (the medial fan or midfan) and shallowing at the edges of the fan (the distal fan or outer fan).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.