A blast injury is a complex type of physical trauma resulting from direct or indirect exposure to an explosion. Blast injuries occur with the detonation of high-order explosives as well as the deflagration of low order explosives. These injuries are compounded when the explosion occurs in a confined space.
Blast injuries are divided into four classes: primary, secondary, tertiary, and quaternary.
Primary injuries are caused by blast overpressure waves, or shock waves. Total body disruption is the most severe and invariably fatal primary injury. Primary injuries are especially likely when a person is close to an exploding munition, such as a land mine. The ears are most often affected by the overpressure, followed by the lungs and the hollow organs of the gastrointestinal tract. Gastrointestinal injuries may present after a delay of hours or even days. Injury from blast overpressure is a pressure and time dependent function. By increasing the pressure or its duration, the severity of injury will also increase.
Extensive damage can also be inflicted upon the auditory system. The tympanic membrane (also known as the eardrum) may be perforated by the intensity of the pressure waves. Furthermore, the hair cells, the sound receptors found within the cochlea, can be permanently damaged and can result in a hearing loss of a mild to profound degree. Additionally, the intensity of the pressure changes from the blast can cause injury to the blood vessels and neural pathways within the auditory system. Therefore, affected individuals can have auditory processing deficits while having normal hearing thresholds. The combination of these effects can lead to hearing loss, tinnitus, headache, vertigo (dizziness), and difficulty processing sound.
In general, primary blast injuries are characterized by the absence of external injuries; thus internal injuries are frequently unrecognized and their severity underestimated.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course offers students the opportunity to acquire the methods and tools needed for modern risk management from an engineering perspective. It focuses on actors, resources and objectives, while en
Penetrating trauma is an open wound injury that occurs when an object pierces the skin and enters a tissue of the body, creating a deep but relatively narrow entry wound. In contrast, a blunt or non-penetrating trauma may have some deep damage, but the overlying skin is not necessarily broken and the wound is still closed to the outside environment. The penetrating object may remain in the tissues, come back out the path it entered, or pass through the full thickness of the tissues and exit from another area.
A pulmonary contusion, also known as lung contusion, is a bruise of the lung, caused by chest trauma. As a result of damage to capillaries, blood and other fluids accumulate in the lung tissue. The excess fluid interferes with gas exchange, potentially leading to inadequate oxygen levels (hypoxia). Unlike pulmonary laceration, another type of lung injury, pulmonary contusion does not involve a cut or tear of the lung tissue. A pulmonary contusion is usually caused directly by blunt trauma but can also result from explosion injuries or a shock wave associated with penetrating trauma.
A gunshot wound (GSW) is a penetrating injury caused by a projectile (e.g. a bullet) from a gun (typically firearm or air gun). Damages may include bleeding, bone fractures, organ damage, wound infection, loss of the ability to move part of the body and, in severe cases, death. Damage depends on the part of the body hit, the path the bullet follows through the body, and the type and speed of the bullet.
The intricate process of wound healing involves activation of biological pathways that work in concert to regenerate a tissue microenvironment consisting of cells and external cellular matrix (ECM) with enzymes, cytokines, and growth factors. Distinct stag ...
LAI, S., A. PANARESE, R. LAWRENCE, M. L. BONINGER, S. MICERA, and F. AMBROSIO. A Murine Model of Robotic Training to Evaluate Skeletal Muscle Recovery after Injury. Med. Sci. Sports Exerc., Vol. 49, No. 4, pp. 840-847, 2017. Purpose: In vivo studies have s ...
Individuals with severe neurologic injuries often cannot participate in robotic rehabilitation because they do not retain sufficient residual motor control to initiate the robotic assistance. In these situations, brain- and body-computer interfaces have em ...