In group theory, a branch of mathematics, a core is any of certain special normal subgroups of a group. The two most common types are the normal core of a subgroup and the p-core of a group.
For a group G, the normal core or normal interior of a subgroup H is the largest normal subgroup of G that is contained in H (or equivalently, the intersection of the conjugates of H). More generally, the core of H with respect to a subset S ⊆ G is the intersection of the conjugates of H under S, i.e.
Under this more general definition, the normal core is the core with respect to S = G. The normal core of any normal subgroup is the subgroup itself.
Normal cores are important in the context of group actions on sets, where the normal core of the isotropy subgroup of any point acts as the identity on its entire orbit. Thus, in case the action is transitive, the normal core of any isotropy subgroup is precisely the kernel of the action.
A core-free subgroup is a subgroup whose normal core is the trivial subgroup. Equivalently, it is a subgroup that occurs as the isotropy subgroup of a transitive, faithful group action.
The solution for the hidden subgroup problem in the abelian case generalizes to finding the normal core in case of subgroups of arbitrary groups.
In this section G will denote a finite group, though some aspects generalize to locally finite groups and to profinite groups.
For a prime p, the p-core of a finite group is defined to be its largest normal p-subgroup. It is the normal core of every Sylow p-subgroup of the group. The p-core of G is often denoted , and in particular appears in one of the definitions of the Fitting subgroup of a finite group. Similarly, the p′-core is the largest normal subgroup of G whose order is coprime to p and is denoted . In the area of finite insoluble groups, including the classification of finite simple groups, the 2′-core is often called simply the core and denoted . This causes only a small amount of confusion, because one can usually distinguish between the core of a group and the core of a subgroup within a group.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
Related publications (29)
Explores the relationship between p-torsion and p-divisibility in group theory, highlighting implications of p-divisibility in exact sequences of abelian groups.
Explores algebraic structures, classes of examples, and properties of cyclic groups.
Covers the group presentation of S3, normal subgroups, generators, relations, quotient groups, and injective homomorphisms.
In mathematics, a profinite group is a topological group that is in a certain sense assembled from a system of finite groups. The idea of using a profinite group is to provide a "uniform", or "synoptic", view of an entire system of finite groups. Properties of the profinite group are generally speaking uniform properties of the system. For example, the profinite group is finitely generated (as a topological group) if and only if there exists such that every group in the system can be generated by elements.
In mathematics, specifically group theory, given a prime number p, a p-group is a group in which the order of every element is a power of p. That is, for each element g of a p-group G, there exists a nonnegative integer n such that the product of pn copies of g, and not fewer, is equal to the identity element. The orders of different elements may be different powers of p. Abelian p-groups are also called p-primary or simply primary. A finite group is a p-group if and only if its order (the number of its elements) is a power of p.
In mathematics, specifically group theory, the index of a subgroup H in a group G is the number of left cosets of H in G, or equivalently, the number of right cosets of H in G. The index is denoted or or . Because G is the disjoint union of the left cosets and because each left coset has the same size as H, the index is related to the orders of the two groups by the formula (interpret the quantities as cardinal numbers if some of them are infinite). Thus the index measures the "relative sizes" of G and H.
The Cremona group is the group of birational transformations of the complex projective plane. In this paper we classify its subgroups that consist only of elliptic elements using elementary model theory. This yields in particular a description of the struc ...
Let Y be a simply connected simple algebraic group over an algebraically closed field k of characteristic p and let X be a maximal closed connected simple subgroup of Y.
Excluding some small primes in specific cases, we classify the p-restrict ...
Let G be the homeomorphism group of a dendrite. We study the normal subgroups of G. For instance, there are uncountably many nonisomorphic such groups G that are simple groups. Moreover, these groups can be chosen so that any isometric G-action on any metr ...