Concept

Equality (mathematics)

Related concepts (18)
Reflexive relation
In mathematics, a binary relation R on a set X is reflexive if it relates every element of X to itself. An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations.
Relation (mathematics)
In mathematics, a binary relation on a set may, or may not, hold between two given set members. For example, "is less than" is a relation on the set of natural numbers; it holds e.g. between 1 and 3 (denoted as 1
Division by zero
In mathematics, division by zero is division where the divisor (denominator) is zero. Such a division can be formally expressed as , where a is the dividend (numerator). In ordinary arithmetic, the expression has no meaning, as there is no number that, when multiplied by 0, gives a (assuming ); thus, division by zero is undefined (a type of singularity). Since any number multiplied by zero is zero, the expression is also undefined; when it is the form of a limit, it is an indeterminate form.
Transitive relation
In mathematics, a relation R on a set X is transitive if, for all elements a, b, c in X, whenever R relates a to b and b to c, then R also relates a to c. Each partial order as well as each equivalence relation needs to be transitive. A homogeneous relation R on the set X is a transitive relation if, for all a, b, c ∈ X, if a R b and b R c, then a R c. Or in terms of first-order logic: where a R b is the infix notation for (a, b) ∈ R. As a non-mathematical example, the relation "is an ancestor of" is transitive.
Equals sign
The equals sign (British English) or equal sign (American English), also known as the equality sign, is the mathematical symbol , which is used to indicate equality in some well-defined sense. In an equation, it is placed between two expressions that have the same value, or for which one studies the conditions under which they have the same value. In Unicode and ASCII, it has the code point U+003D. It was invented in 1557 by Robert Recorde.
Congruence relation
In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. Every congruence relation has a corresponding quotient structure, whose elements are the equivalence classes (or congruence classes) for the relation. The prototypical example of a congruence relation is congruence modulo on the set of integers.
Symmetric relation
A symmetric relation is a type of binary relation. An example is the relation "is equal to", because if a = b is true then b = a is also true. Formally, a binary relation R over a set X is symmetric if: where the notation means that . If RT represents the converse of R, then R is symmetric if and only if R = RT. Symmetry, along with reflexivity and transitivity, are the three defining properties of an equivalence relation. "is equal to" (equality) (whereas "is less than" is not symmetric) "is comparable to", for elements of a partially ordered set ".
Commutative property
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of the property that says something like "3 + 4 = 4 + 3" or "2 × 5 = 5 × 2", the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it (for example, "3 − 5 ≠ 5 − 3"); such operations are not commutative, and so are referred to as noncommutative operations.
Identity (mathematics)
In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables within a certain range of validity. In other words, A = B is an identity if A and B define the same functions, and an identity is an equality between functions that are differently defined. For example, and are identities. Identities are sometimes indicated by the triple bar symbol ≡ instead of =, the equals sign.
Real number
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.