In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of the property that says something like "3 + 4 = 4 + 3" or "2 × 5 = 5 × 2", the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it (for example, "3 − 5 ≠ 5 − 3"); such operations are not commutative, and so are referred to as noncommutative operations. The idea that simple operations, such as the multiplication and addition of numbers, are commutative was for many years implicitly assumed. Thus, this property was not named until the 19th century, when mathematics started to become formalized. A similar property exists for binary relations; a binary relation is said to be symmetric if the relation applies regardless of the order of its operands; for example, equality is symmetric as two equal mathematical objects are equal regardless of their order.
A binary operation on a set S is called commutative if
An operation that does not satisfy the above property is called non-commutative.
One says that x commutes with y or that x and y commute under if
In other words, an operation is commutative if every two elements commute.
Addition and multiplication are commutative in most number systems, and, in particular, between natural numbers, integers, rational numbers, real numbers and complex numbers. This is also true in every field.
Addition is commutative in every vector space and in every algebra.
Union and intersection are commutative operations on sets.
"And" and "or" are commutative logical operations.
Some noncommutative binary operations:
Equation xy = yx
Division is noncommutative, since .
Subtraction is noncommutative, since . However it is classified more precisely as anti-commutative, since .
Exponentiation is noncommutative, since .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs. Within an expression containing two or more occurrences in a row of the same associative operator, the order in which the operations are performed does not matter as long as the sequence of the operands is not changed.
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
In mathematics, anticommutativity is a specific property of some non-commutative mathematical operations. Swapping the position of two arguments of an antisymmetric operation yields a result which is the inverse of the result with unswapped arguments. The notion inverse refers to a group structure on the operation's codomain, possibly with another operation. Subtraction is an anticommutative operation because commuting the operands of a − b gives b − a = −(a − b); for example, 2 − 10 = −(10 − 2) = −8.
In this thesis we will present two results on global existence for nonlinear dispersive equations with data at or below the scaling regularity. In chapter 1 we take a probabilistic perspective to study the energy-critical nonlinear Schrödinger equation in ...
In the class of Sobolev vector fields in R-n of bounded divergence, for which the theory of DiPerna and Lions provides a well defined notion of flow, we characterize the vector fields whose flow commutes in terms of the Lie bracket and of a regularity cond ...
ELSEVIER2022
Curie's principle states that "when effects show certain asymmetry, this asymmetry must be found in the causes that gave rise to them." We demonstrate that symmetry equivariant neural networks uphold Curie's principle and can be used to articulate many sym ...